We investigate numerically the effect of long-range interaction on the transverse localization of light. To this end, nonlinear zigzag optical waveguide lattices are applied, which allows precise tuning of the second-order coupling. We find that localization is hindered by coupling between next-nearest lattice sites. Additionally, (focusing) nonlinearity facilitates localization with increasing disorder, as long as the nonlinearity is sufficiently weak. However, for strong nonlinearities, increasing disorder results in weaker localization. The threshold nonlinearity, above which this anomalous result is observed grows with increasing second-order coupling.