Do you want to publish a course? Click here

The Stagger-grid: A Grid of 3D Stellar Atmosphere Models - I. Methods and General Properties

130   0   0.0 ( 0 )
 Added by Zazralt Magic
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the Stagger-grid, a comprehensive grid of time-dependent, 3D hydrodynamic model atmospheres for late-type stars with realistic treatment of radiative transfer, covering a wide range in stellar parameters. This grid of 3D models is intended for various applications like stellar spectroscopy, asteroseismology and the study of stellar convection. In this introductory paper, we describe the methods used for the computation of the grid and discuss the general properties of the 3D models as well as their temporal and spatial averages (<3D>). All our models were generated with the Stagger-code, using realistic input physics for the equation of state (EOS) and for continuous and line opacities. Our ~220 grid models range in Teff from 4000 to 7000K in steps of 500K, in log g from 1.5 to 5.0 in steps of 0.5 dex, and [Fe/H] from -4.0 to +0.5 in steps of 0.5 and 1.0 dex. We find a tight scaling relation between the vertical velocity and the surface entropy jump, which itself correlates with the constant entropy value of the adiabatic convection zone. The range in intensity contrast is enhanced at lower metallicity. The granule size correlates closely with the pressure scale height sampled at the depth of maximum velocity. We compare the <3D> models with widely applied 1D models, as well as with theoretical 1D hydrostatic models generated with the same EOS and opacity tables as the 3D models, in order to isolate the effects of using self-consistent and hydrodynamic modeling of convection, rather than the classical mixing length theory approach. For the first time, we are able to quantify systematically over a broad range of stellar parameters the uncertainties of 1D models arising from the simplified treatment of physics, in particular convective energy transport. In agreement with previous findings, we find that the differences can be significant, especially for metal-poor stars.

rate research

Read More

Relations between temperature, T, and optical depth, tau, are often used for describing the photospheric transition from optically thick to optically thin in stellar structure models. We show that this is well justified, but also that currently used T(tau) relations are often inconsistent with their implementation. As an outer boundary condition on the system of stellar structure equations, T(tau) relations have an undue effect on the overall structure of stars. In this age of precision asteroseismology, we need to re-assess both the method for computing and for implementing T(tau) relations, and the assumptions they rest on. We develop a formulation for proper and consistent evaluation of T(tau) relations from arbitrary 1D or 3D stellar atmospheres, and for their implementation in stellar structure and evolution models. We extract radiative T(tau) relations, as described by our new formulation, from 3D simulations of convection in deep stellar atmospheres of late-type stars from dwarfs to giants. These simulations employ realistic opacities and equation of state, and account for line-blanketing. For comparison, we also extract T(tau) relations from 1D MARCS model atmospheres using the same formulation. T(tau)-relations from our grid of 3D convection simulations display a larger range of behaviours with surface gravity, compared with those of conventional theoretical 1D hydrostatic atmosphere models. Based on this, we recommend no longer to use scaled solar T(tau) relations. Files with T(tau) relations for our grid of simulations are made available to the community, together with routines for interpolating in this irregular grid. We also provide matching tables of atmospheric opacity, for consistent implementation in stellar structure models.
We analyse the effect on adiabatic stellar oscillation frequencies of replacing the near-surface layers in 1D stellar structure models with averaged 3D stellar surface convection simulations. The main difference is an expansion of the atmosphere by 3D convection, expected to explain a major part of the asteroseismic surface effect; a systematic overestimation of p-mode frequencies due to inadequate surface physics. We employ pairs of 1D stellar envelope models and 3D simulations from a previous calibration of the mixing-length parameter, alpha. That calibration constitutes the hitherto most consistent matching of 1D models to 3D simulations, ensuring that their differences are not spurious, but entirely due to the 3D nature of convection. The resulting frequency shift is identified as the structural part of the surface effect. The important, typically non-adiabatic, modal components of the surface effect are not included in the present analysis, but relegated to future papers. Evaluating the structural surface effect at the frequency of maximum mode amplitude, $ u_{rm max}$, we find shifts from $delta u$=-0.8 microHz for giants at $log g$=2.2 to -35 microHz for a ($T_{rm eff}=6901$ K, $log g$=4.29) dwarf. The fractional effect $delta u( u_{rm max})/ u_{rm max}$, ranges from -0.1% for a cool dwarf (4185 K, 4.74) to -6% for a warm giant (4962 K, 2.20).
112 - R. Meijerink , G. Aresu , I. Kamp 2012
Context. Planets are thought to eventually form from the mostly gaseous (~99% of the mass) disks around young stars. The density structure and chemical composition of protoplanetary disks are affected by the incident radiation field at optical, FUV, and X-ray wavelengths, as well as by the dust properties. Aims. The effect of FUV and X-rays on the disk structure and the gas chemical composition are investigated. This work forms the basis of a second paper, which discusses the impact on diagnostic lines of, e.g., C+, O, H2O, and Ne+ observed with facilities such as Spitzer and Herschel. Methods. A grid of 240 models is computed in which the X-ray and FUV luminosity, minimum grain size, dust size distribution, and surface density distribution are varied in a systematic way. The hydrostatic structure and the thermo-chemical structure are calculated using ProDiMo. Results. The abundance structure of neutral oxygen is stable to changes in the X-ray and FUV luminosity, and the emission lines will thus be useful tracers of the disk mass and temperature. The C+ abundance distribution is sensitive to both X-rays and FUV. The radial column density profile shows two peaks, one at the inner rim and a second one at a radius r=5-10 AU. Ne+ and other heavy elements have a very strong response to X-rays, and the column density in the inner disk increases by two orders of magnitude from the lowest (LX = 1e29 erg/s) to the highest considered X-ray flux (LX = 1e32 erg/s). FUV confines the Ne+ ionized region to areas closer to the star at low X-ray luminosities (LX = 1e29 erg/s). H2O abundances are enhanced by X-rays due to higher temperatures in the inner disk and higher ionization fractions in the outer disk. The line fluxes and profiles are affected by the effects on these species, thus providing diagnostic value in the study of FUV and X-ray irradiated disks around T Tauri stars. (abridged)
The evolution and spectral properties of stars on the AGB are significantly affected by mass loss through dusty stellar winds. Dynamic atmosphere and wind models are an essential tool for studying these evolved stars, both individually and as members of stellar populations, to understand their contribution to the integrated light and chemical evolution of galaxies. This paper is part of a series testing state-of-the-art atmosphere and wind models of carbon stars against observations, and making them available for use in various theoretical and observational studies. We have computed low-resolution spectra and photometry (in the wavelength range 0.35-25 mu) for a grid of 540 dynamic models with stellar parameters typical of solar-metallicity C-rich AGB stars and with a range of pulsation amplitudes. The models cover the dynamic atmosphere and dusty outflow (if present), assuming spherical symmetry, and taking opacities of gas-phase species and dust grains consistently into account. To characterize the time-dependent dynamic and photometric behaviour of the models in a concise way we defined a number of classes for models with and without winds. Comparisons with observed data in general show a quite good agreement for example regarding mass-loss rates vs. (J-K) colours or K magnitudes vs. (J-K) colours. Some exceptions from the good overall agreement, however, are found and attributed to the range of input parameters (e.g. relatively high carbon excesses) or intrinsic model assumptions (e.g. small particle limit for grain opacities). While current results indicate that some changes in model assumptions and parameter ranges should be made in the future to bring certain synthetic observables into better agreement with observations, it seems unlikely that these pending improvements will significantly affect the mass-loss rates of the models.
127 - Michele Trabucchi 2018
We present a new grid of non-adiabatic, linear pulsation models of Long-Period Variables (LPVs), including periods and growth rates for radial modes from the fundamental to the fourth overtone. The models span a wide range in mass, luminosity, metallicity, C/O ratio and helium abundance, effectively covering the whole thermally-pulsing asymptotic giant branch (TP-AGB) evolution, and representing a significant update with respect to previous works. The main improvement is the inclusion of detailed atomic and molecular opacities, consistent with the models chemical mixture, that makes the present set of models the first to systematically account for variability in C-stars. We examine periods and growth rates in the models, and find that, while the fundamental mode is affected by the structure of the envelope, overtones are less sensitive to the interior and largely determined by the global properties. In the models, the frequency of the overtone with the largest degree of excitation is found to scale with the acoustic cut-off frequency at the stellar surface, a behaviour similar to that observed for the frequency of maximum oscillation power for solar-like oscillations in less evolved red giants. This allows us to provide a simple analytic prescription to predict the most-likely dominant mode as a function of stellar parameters. Best-fit relations for periods are also provided. By applying results of pulsation models to evolutionary tracks, we present a general picture of the evolution of long-period variability during the TP-AGB, that we find consistent with observations. Models are made public through a dedicated web interface.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا