Do you want to publish a course? Click here

Chandra observation of the Galactic supernova remnant CTB 109 (G109.1-1.0)

528   0   0.0 ( 0 )
 Added by Manami Sasaki
 Publication date 2013
  fields Physics
and research's language is English
 Authors Manami Sasaki




Ask ChatGPT about the research

Context: We study the X-ray emission of the Galactic supernova remnant (SNR) CTB 109 (G109.1-1.0), which is well-known for its enigmatic half-shell morphology both in radio and in X-rays and is associated with the anomalous X-ray pulsar (AXP) 1E2259+586. Aims: We want to understand the origin of the X-ray bright feature inside the SNR called the Lobe and the details of the interaction of the SNR shock wave with the ambient interstellar medium (ISM). Methods: The Lobe and the northeastern part of the SNR were observed with Chandra ACIS-I. We analysed the spectrum of the X-ray emission by dividing the entire observed emission into small regions. The X-ray emission is best reproduced with one-component or two-component non-equilibrium ionisation models depending on the position. In the two-component model one emission component represents the shocked ISM and the other the shocked ejecta. Results: We detect enhanced element abundances, in particular for Si and Fe, in and around the Lobe. There is one particular region next to the Lobe with a high Si abundance of 3.3 (2.6 - 4.0) times the solar value. This is the first, unequivocal detection of ejecta in CTB 109. Conclusions: The new Chandra data confirm that the Lobe was created by the interaction of the SNR shock and the supernova ejecta with dense and inhomogeneous medium in the environment of SNR CTB 109. The newly calculated age of the SNR is t ~ 1.4 x 10^4 yr.



rate research

Read More

We present direct images in the H$alpha$ and [SII]$lambda lambda$6717,6731 $text{AA}$ lines of the Galactic Supernova Remnant G109.1-1.0 (CTB 109). We confirm that the filaments detected are the optical counterpart of the X-ray and radio supernova remnant due to their high [SII]/H$alpha$ line-ratios. We study for the first time the kinematics of the optical counterpart of SNR CTB 109 using the UNAM scanning Fabry-Perot interferometer PUMA. We estimate a systemic velocity of V$_{LSR}$=-50$pm$6 km s$^{-1}$ for this remnant and an expansion velocity of V$_{exp}$=230$pm$5 km s$^{-1}$. From this velocity value and taking into account previous studies about the kinematics of objects at that Galactic longitude we derive a distance to the SNR CTB 109 of 3.1$pm$0.2 kpc, locating it in the Perseus arm. Using the [SII]$lambda$6717/[SII]$lambda$6731 line-ratio we find an electronic density value around n$_e$= 580 cm$^{-3}$. Considering that this remnant is evolving in a low density medium with higher density cloudlets responsible of the optical emission, we determine the age and energy deposited in the ISM by the supernova explosion (E$_0$) in both the Sedov-Taylor phase and the radiative phase. For both cases the age is of thousands of years and the E$_0$ is rather typical of SNRs containing simple pulsars so that, the energy released to the ISM cannot be used to distinguish between supernova remnants hosting typical pulsars from those hosting powerful magnetars as in the case of CTB 109.
63 - Manami Sasaki 2006
We report the detection of molecular clouds around the X-ray bright interior feature in the Galactic supernova remnant (SNR) CTB 109 (G109.1-1.0). This feature, called the Lobe, has been previously suggested to be the result of an interaction of the SNR shock wave with a molecular cloud complex. We present new high resolution X-ray data from the Chandra X-ray Observatory and new high resolution CO data from the Five College Radio Observatory which show the interaction region with the cloud complex in greater detail. The CO data reveal three clouds around the Lobe in the velocity interval -57 < v < -52 km s^-1. The velocity profiles of 12CO at various parts of the east cloud are well fit with a Gaussian; however, at the position where the CO cloud and the Lobe overlap, the velocity profile has an additional component towards higher negative velocities. The molecular hydrogen density in this part of the cloud is relatively high (N_H2 = 1.9 x 10^20 cm^-2), whereas the foreground absorption in X-rays (N_H = 4.5 x 10^21 cm^-2), obtained from Chandra data, is lower than in other parts of the cloud and in the north and south cloud. These results indicate that this cloud has been hit by the SNR blast wave on the western side, forming the bright X-ray Lobe.
Ages of the magnetar 1E 2259+586 and the associated supernova remnant CTB~109 were studied. Analyzing the Suzaku data of CTB~109, its age was estimated to be $sim$14~kyr, which is much shorter than the measured characteristic age of 1E 2259+586, 230 kyr. This reconfirms the previously reported age discrepancy of this magnetar/remnant association, and suggests that the characteristic ages of magnetars are generally over-estimated as compared to their true ages. This discrepancy is thought to arise because the former are calculated without considering decay of the magnetic fields. This novel view is supported independently by much stronger Galactic-plane concentration of magnetars than other pulsars. The process of magnetic field decay in magnetars is mathematically modeled. It is implied that magnetars are much younger objects than previously considered, and can dominate new-born neutron stars.
The supernova remnant (SNR) W51C is a Galactic object located in a strongly inhomogeneous interstellar medium with signs of an interaction of the SNR blast wave with dense molecular gas. Diffuse X-ray emission from the interior of the SNR can reveal element abundances in the different emission regions and shed light on the type of supernova (SN) explosion and its progenitor. The hard X-ray emission helps to identify possible candidates for a pulsar formed in the SN explosion and for its pulsar wind nebula (PWN). We have analysed X-ray data obtained with XMM-Newton. Spectral analyses in selected regions were performed. Ejecta emission in the bright western part of the SNR, located next to a complex of dense molecular gas, was confirmed. The Ne and Mg abundances suggest a massive progenitor with a mass of > 20 M_sun. Two extended regions emitting hard X-rays were identified (corresponding to the known sources [KLS2002] HX3 west and CXO J192318.5+140305 discovered with ASCA and Chandra, respectively), each of which has an additional point source inside and shows a power-law spectrum with Gamma ~ 1.8. Based on their X-ray emission, both sources can be classified as PWN candidates.
We present an X-ray study of the mixed-morphology supernova remnant CTB 1 (G116.9+0.2) observed with Suzaku. The 0.6-2.0 keV spectra in the northeast breakout region of CTB 1 are well represented by a collisional ionization-equilibrium plasma model with an electron temperature of ~ 0.3 keV, whereas those in the southwest inner-shell region can be reproduced by a recombining plasma model with an electron temperature of ~ 0.2 keV, an initial ionization temperature of ~ 3 keV, and an ionization parameter of ~ 9 $times$ 10$^{11}$ cm$^{-3}$s. This is the first detection of the recombining plasma in CTB 1. The electron temperature in the inner-shell region decreases outwards, which implies that the recombining plasma is likely formed by the thermal conduction via interaction with the surrounding cold interstellar medium. The Ne abundance is almost uniform in the observed regions whereas Fe is more abundant toward the southwest of the remnant, suggesting an asymmetric ejecta distribution. We also detect a hard tail above the 2 keV band that is fitted with a power-law function with a photon index of 2-3. The flux of the hard tail in the 2-10 keV band is ~ 5 $times$ 10$^{-13}$ erg cm$^{-2}$ s$^{-1}$ and is peaked at the center of CTB 1. Its origin is unclear but one possibility is a putative pulsar wind nebula associated with CTB 1.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا