No Arabic abstract
We report on the experimental realization of electric quantum walks, which mimic the effect of an electric field on a charged particle in a lattice. Starting from a textbook implementation of discrete-time quantum walks, we introduce an extra operation in each step to implement the effect of the field. The recorded dynamics of such a quantum particle exhibits features closely related to Bloch oscillations and interband tunneling. In particular, we explore the regime of strong fields, demonstrating contrasting quantum behaviors: quantum resonances vs. dynamical localization depending on whether the accumulated Bloch phase is a rational or irrational fraction of 2pi.
Bloch oscillations appear when an electric field is superimposed on a quantum particle that evolves on a lattice with a tight-binding Hamiltonian (TBH), i.e., evolves via what we will call an electric TBH; this phenomenon will be referred to as TBH Bloch oscillations. A similar phenomenon is known to show up in so-called electric discrete-time quantum walks (DQWs); this phenomenon will be referred to as DQW Bloch oscillations. This similarity is particularly salient when the electric field of the DQW is weak. For a wide, i.e., spatially extended initial condition, one numerically observes semi-classical oscillations, i.e., oscillations of a localized particle, both for the electric TBH and the electric DQW. More precisely: The numerical simulations strongly suggest that the semi-classical DQW Bloch oscillations correspond to two counter-propagating semi-classical TBH Bloch oscillations. In this work it is shown that, under certain assumptions, the solution of the electric DQW for a weak electric field and a wide initial condition is well approximated by the superposition of two continuous-time expressions, which are counter-propagating solutions of an electric TBH whose hopping amplitude is the cosine of the arbitrary coin-operator mixing angle. In contrast, if one wishes the continuous-time approximation to hold for spatially localized initial conditions, one needs at least the DQW to be lazy, as suggested by numerical simulations and by the fact that this has been proven in the case of a vanishing electric field.
We study one-dimensional quantum walks in a homogeneous electric field. The field is given by a phase which depends linearly on position and is applied after each step. The long time propagation properties of this system, such as revivals, ballistic expansion and Anderson localization, depend very sensitively on the value of the electric field $Phi$, e.g., on whether $Phi/(2pi)$ is rational or irrational. We relate these properties to the continued fraction expansion of the field. When the field is given only with finite accuracy, the beginning of the expansion allows analogous conclusions about the behavior on finite time scales.
A quantum walk places a traverser into a superposition of both graph location and traversal spin. The walk is defined by an initial condition, an evolution determined by a unitary coin/shift-operator, and a measurement based on the sampling of the probability distribution generated from the quantum wavefunction. Simple quantum walks are studied analytically, but for large graph structures with complex topologies, numerical solutions are typically required. For the quantum theorist, the Gremlin graph traversal machine and language can be used for the numerical analysis of quantum walks on such structures. Additionally, for the graph theorist, the adoption of quantum walk principles can transform what are currently side-effect laden traversals into pure, stateless functional flows. This is true even when the constraints of quantum mechanics are not fully respected (e.g. reversible and unitary evolution). In sum, Gremlin allows both types of theorist to leverage each others constructs for the advancement of their respective disciplines.
The emission characteristics in the fluorescence of two laser-driven dipole-dipole-interacting three level atoms is investigated. When the light from both atoms is detected separately a correlation of the emission processes is observed in dependence of the dipole-dipole interaction. This opens the possibility to investigate the dipole-dipole interaction through the emission behavior. We present Monte-Carlo simulations which are in good agreement with the analytic solutions.
Quantum key distribution is one of the most fundamental cryptographic protocols. Quantum walks are important primitives for computing. In this paper we take advantage of the properties of quantum walks to design new secure quantum key distribution schemes. In particular, we introduce a secure quantum key-distribution protocol equipped with verification procedures against full man-in-the-middle attacks. Furthermore, we present a one-way protocol and prove its security. Finally, we propose a semi-quantum variation and prove its robustness against eavesdropping.