Do you want to publish a course? Click here

Quantized coexisting electrons and holes in graphene measured using temperature dependent magneto-transport

463   0   0.0 ( 0 )
 Added by Uli Zeitler
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present temperature-dependent magneto-transport experiments around the charge neutrality point in graphene and determine the amplitude of potential fluctuations $s$ responsible for the formation of electron-hole puddles. The experimental value $s approx 20$ meV is considerably larger than in conventional semiconductors which implies a strong localization of charge carriers observable up to room temperature. Surprisingly, in the quantized regime, the Hall resistivity overshoots the highest plateau values at high temperatures. We demonstrate by model calculations that such a peculiar behavior is expected in any system with coexisting electrons and holes when the energy spectrum is quantized and the carriers are partially localized.



rate research

Read More

We report a study of disorder effects on epitaxial graphene in the vicinity of the Dirac point by magneto-transport. Hall effect measurements show that the carrier density increases quadratically with temperature, in good agreement with theoretical predictions which take into account intrinsic thermal excitation combined with electron-hole puddles induced by charged impurities. We deduce disorder strengths in the range 10.2 $sim$ 31.2 meV, depending on the sample treatment. We investigate the scattering mechanisms and estimate the impurity density to be $3.0 sim 9.1 times 10^{10}$ cm$^{-2}$ for our samples. An asymmetry in the electron/hole scattering is observed and is consistent with theoretical calculations for graphene on SiC substrates. We also show that the minimum conductivity increases with increasing disorder potential, in good agreement with quantum-mechanical numerical calculations.
134 - E. H. Hwang , S. Das Sarma 2008
We calculate the temperature dependent conductivity of graphene in the presence of randomly distributed Coulomb impurity charges arising from the temperature dependent screening of the Coulomb disorder without any phonons. The purely electronic temperature dependence of our theory arises from two independent mechanisms: the explicit temperature dependence of the finite temperature dielectric function $epsilon(q,T)$ and the finite temperature energy averaging of the transport scattering time. We find that the calculated temperature dependent conductivity is non-monotonic, decreasing with temperature at low temperatures, and increasing at high temperatures. We provide a critical comparison with the corresponding physics in semiconductor-based parabolic band 2D electron gas systems.
We study the quantization of Dirac fermions in lithographically defined graphene nanoconstrictions. We observe quantized conductance in single nanoconstrictions fabricated on top of a thin hexamethyldisilazane layer over a Si/SiO_2 wafer. This nanofabrication method allows us to obtain well defined edges in the nanoconstrictions, thus reducing the effects of edge roughness on the conductance. We prove the occurrence of ballistic transport and identify several size quantization plateaus in the conductance at low temperature. Experimental data and numerical simulations show good agreement, demonstrating that the smoothing of the plateaus is not related to edge roughness but to quantum interference effects.
The relativistic nature of Dirac electrons and holes in graphene profoundly affects the way they interact with impurities. Signatures of the relativistic behavior have been observed recently in scanning tunneling measurements on individual impurities, but the conductance measurements in this regime are typically dominated by electron and hole puddles. Here we present measurements of quantum interference noise and magnetoresistance in graphene pn junctions. Unlike the conductance, the quantum interference noise can provide access to the scattering at the Dirac point:it is sensitive to the motion of a single impurity, it depends strongly on the fundamental symmetries that describe the system and it is determined by the phase-coherent phenomena which are not necessarily obscured by the puddles. The temperature and the carrier density dependence of resistance fluctuations and magnetoresistance in graphene p-n junctions at low temperatures suggest that the noise is dominated by the quantum interference due to scattering on impurities and that the noise minimum could be used to determine the point where the average carrier density is zero. At larger carrier densities, the amplitude of the noise depends strongly on the sign of the impurity charge, reflecting the fact that the electrons and the holes are scattered by the impurity potential in an asymmetric manner.
We propose a method of measuring the electron temperature $T_e$ in mesoscopic conductors and demonstrate experimentally its applicability to micron-size graphene devices in the linear-response regime ($T_eapprox T$, the bath temperature). The method can be {especially useful} in case of overheating, $T_e>T$. It is based on analysis of the correlation function of mesoscopic conductance fluctuations. Although the fluctuation amplitude strongly depends on the details of electron scattering in graphene, we show that $T_e$ extracted from the correlation function is insensitive to these details.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا