Do you want to publish a course? Click here

UVCS/SoHO Catalog of Coronal Mass Ejections from 1996 to 2005: Spectroscopic Proprieties

203   0   0.0 ( 0 )
 Added by Silvio Giordano PhD
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ultraviolet spectra of the extended solar corona have been routinely obtained by SoHO/UVCS since 1996. Sudden variations of spectral parameters are mainly due to the detection of Coronal Mass Ejections (CMEs) crossing the instrumental slit. We present a catalog of CME ultraviolet spectra based upon a systematic search of events in the LASCO CME catalog, and we discuss their statistical properties. Our catalog includes 1059 events through the end of 2005, covering nearly a full solar cycle. It is online available at the URL http://solarweb.oato.inaf.it/UVCS_CME and embedded in the online LASCO CME catalog (http://cdaw.gsfc.nasa.gov/CME_list). The emission lines observed provide diagnostics of CME plasma parameters, such as the light-of-sight velocity, density and temperature and allow to link the CME onset data to the extended corona white-light images. The catalog indicates whether there are clear signatures of features such as shock waves, current sheets, O VI flares, helical motions and which part of the CME structures (front, cavity or prominence material) are detected. The most common detected structure is the cool prominence material (in about 70% of the events). For each event, the catalog also contains movie, images, plots and information relevant to address detailed scientific investigations. The number of events detected in UV is about 1/10 of the LASCO CMEs, and about 1/4 of the halo events. We find that UVCS tends to detect faster, more massive and energetic CME than LASCO and for about 40% of the events events it has been possible to determine the plasma light-of-sight velocity.

rate research

Read More

Stealth coronal mass ejections (CMEs) are eruptions from the Sun that have no obvious low coronal signature. These CMEs are characteristically slower events, but can still be geoeffective and affect space weather at Earth. Therefore, understanding the science underpinning these eruptions will greatly improve our ability to detect and, eventually, forecast them. We present a study of two stealth CMEs analysed using advanced image processing techniques that reveal their faint signatures in observations from the extreme ultraviolet (EUV) imagers onboard the Solar and Heliospheric Observatory (SOHO), Solar Dynamics Observatory (SDO), and Solar Terrestrial Relations Observatory (STEREO) spacecraft. The different viewpoints given by these spacecraft provide the opportunity to study each eruption from above and the side contemporaneously. For each event, EUV and magnetogram observations were combined to reveal the coronal structure that erupted. For one event, the observations indicate the presence of a magnetic flux rope before the CMEs fast rise phase. We found that both events originated in active regions and are likely to be sympathetic CMEs triggered by a nearby eruption. We discuss the physical processes that occurred in the time leading up to the onset of each stealth CME and conclude that these eruptions are part of the low-energy and velocity tail of a distribution of CME events, and are not a distinct phenomenon.
Upcoming missions, including the James Webb Space Telescope, will soon characterize the atmospheres of terrestrial-type exoplanets in habitable zones around cool K- and M-type stars searching for atmospheric biosignatures. Recent observations suggest that the ionizing radiation and particle environment from active cool planet hosts may be detrimental for exoplanetary habitability. Since no direct information on the radiation field is available, empirical relations between signatures of stellar activity, including the sizes and magnetic fields of starspots, are often used. Here, we revisit the empirical relation between the starspot size and the effective stellar temperature and evaluate its impact on estimates of stellar flare energies, coronal mass ejections, and fluxes of the associated stellar energetic particle events.
Coronal mass ejections (CMEs) originate from closed magnetic field regions on the Sun, which are active regions and quiescent filament regions. The energetic populations such as halo CMEs, CMEs associated with magnetic clouds, geoeffective CMEs, CMEs associated with solar energetic particles and interplanetary type II radio bursts, and shock-driving CMEs have been found to originate from sunspot regions. The CME and flare occurrence rates are found to be correlated with the sunspot number, but the correlations are significantly weaker during the maximum phase compared to the rise and declining phases. We suggest that the weaker correlation results from high-latitude CMEs from the polar crown filament regions that are not related to sunspots.
122 - M. Mierla , I. Chifu , B. Inhester 2011
In white-light coronagraph images, cool prominence material is sometimes observed as bright patches in the core of coronal mass ejections (CMEs). If, as generally assumed, this emission is caused by Thomson-scattered light from the solar surface, it should be strongly polarised tangentially to the solar limb. However, the observations of a CME made with the SECCHI/STEREO coronagraphs on 31 August 2007 show that the emission from these bright core patches is exceptionally low polarised. We used the polarisation ratio method of Moran and Davila (2004) to localise the barycentre of the CME cloud. By analysing the data from both STEREO spacecraft we could resolve the plane-of-the-sky ambiguity this method usually suffers from. Stereoscopic triangulation was used to independently localise the low-polarisation patch relative to the cloud. We demonstrated for the first time that the bright core material is located close to the centre of the CME cloud. We show that the major part of the CME core emission, more than 85% in our case, is H$alpha$ radiation and only a small fraction is Thomson-scattered light. Recent calculations also imply that the plasma density in the patch is 8 10$^8$ cm$^{-3}$ or more compared to 2.6 10$^6$ cm$^{-3}$ for the Thomson-scattering CME environment surrounding the core material.
Understanding the magnetic configuration of the source regions of coronal mass ejections (CMEs) is vital in order to determine the trigger and driver of these events. Observations of four CME productive active regions are presented here, which indicate that the pre-eruption magnetic configuration is that of a magnetic flux rope. The flux ropes are formed in the solar atmosphere by the process known as flux cancellation and are stable for several hours before the eruption. The observations also indicate that the magnetic structure that erupts is not the entire flux rope as initially formed, raising the question of whether the flux rope is able to undergo a partial eruption or whether it undergoes a transition in specific flux rope configuration shortly before the CME.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا