Gamow-Teller (GT) strength distributions of Mg isotopes are investigated within a framework of the deformed quasi-particle random phase approximation(DQRPA). We found that the N=20 shell closure in $^{28 sim 34}$Mg was broken by the prolate shape deformation originating from the {it fp}-intruder states. The shell closure breaking gives rise to a shift of low-lying GT excited states into high-lying states. Discussions regarding the shell evolution trend of single particle states around N=20 nuclei are also presented with the comparison to other approaches.
A systematic shell model description of the experimental Gamow-Teller transition strength distributions in $^{42}$Ti, $^{46}$Cr, $^{50}$Fe and $^{54}$Ni is presented. These transitions have been recently measured via $beta$ decay of these $T_z$=-1 nuclei, produced in fragmentation reactions at GSI and also with ($^3${He},$t$) charge-exchange (CE) reactions corresponding to $T_z = + 1$ to $T_z = 0$ carried out at RCNP-Osaka.The calculations are performed in the $pf$ model space, using the GXPF1a and KB3G effective interactions. Qualitative agreement is obtained for the individual transitions, while the calculated summed transition strengths closely reproduce the observed ones.
Gamow-Teller (GT) transitions from high-spin isomers are studied using the sum-rule approach and the shell model. The GT transition strengths from the high-spin isomeric states show a stronger collectivity than those from the ground states in two $N=Z$ nuclei, $^{52}$Fe and $^{94}$Ag. It is argued that the spin-up and spin-down Fermi spheres involved in the GT transitions from the high-spin isomeric states play important roles. These Fermi spheres are analogous to the isospin-up and isospin-down Fermi spheres for the GT transitions from the ground states in $N>Z$ nuclei and create a strong collectivity.
Solar neutrino capture cross-section by 127I nucleus has been studied with taking into account the influence of the resonance structure of the nuclear strength function S(E). Three types of isobaric resonances: giant Gamow-Teller, analog resonance and low-lying Gamow-Teller pigmy resonances has been investigated on the framework of self-consistent theory of finite Fermi systems. The calculations have been performed considering the resonance structure of the charge-exchange strength function S(E). We analyze the effect of each resonance on the energy dependence of the cross-section. It has been shown that all high-lying resonances should be considered. Neutron emission process for high energy nuclear excitation leads to formation 126Xe isotope. We evaluate contribution from various sources of solar neutrinos to the 126Xe/127Xe isotopes ratio formed by energetic neutrinos. 126Xe/127Xe isotope ratio could be an indicator of high-energy boron neutrinos in the solar spectrum. We also discuss the uncertainties in the often used Fermi-functions calculations.
We optimize chiral interactions at next-to-next-to leading order to observables in two- and three-nucleon systems, and compute Gamow-Teller transitions in carbon-14, oxygen-22 and oxygen-24 using consistent two-body currents. We compute spectra of the daughter nuclei nitrogen-14, fluorine-22 and fluorine-24 via an isospin-breaking coupled-cluster technique, with several predictions. The two-body currents reduce the Ikeda sum rule, corresponding to a quenching factor q^2 ~ 0.84-0.92 of the axial-vector coupling. The half life of carbon-14 depends on the energy of the first excited 1+ state, the three-nucleon force, and the two-body current.
We perform a systematic study of Gamow-Teller (GT) transitions in the 2p1f shell, using the nuclear shell model with two schematic Hamiltonians. The use of the shell model provides flexibility to analyze the role of different proton-neutron pairing modes in the presence of nuclear deformation. The schematic Hamiltonians that are used contain a quadrupole-quadrupole interaction as well as isoscalar (T=0) and isovector (T=1) pairing interactions, but differ in the single particle energies. The objective of the work is to observe the behavior of GT transitions in different isoscalar and isovector pairing scenarios, together with the corresponding energy spectra and rotational properties of the parent and daughter nuclei (42Ca -> 42Sc, 44Ca -> 44Sc, 46Ti -> 46V, 48Ti -> 48V). We also treat the rotational properties of 44Ti and 48Cr. All results are compared with experimental data. The results obtained from our models depend on the different scenarios that arise, whether for N = Z or N neq Z nuclei. In the latter case, the presence of an attractive isoscalar pairing interaction imposes a 1+ ground state in odd-odd nuclei, contrary to observations for some of the nuclei considered, and it is necessary to suppress that pairing mode when considering such nuclei. The effect of varying the strength parameters for the two pairing modes is found to exhibit different but systematic effects on energy spectra and on GT transition properties.