Do you want to publish a course? Click here

Non-local approach to kinetic effects on parallel transport in fluid models of the scrape-off layer

186   0   0.0 ( 0 )
 Added by John Omotani
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

By using a non-local model, fluid simulations can capture kinetic effects in the parallel electron heat-flux better than is possible using flux limiters in the usual diffusive models. Non-local and diffusive models are compared using a test case representative of an ELM crash in the JET SOL, simulated in one dimension. The non-local model shows substantially enhanced electron temperature gradients, which cannot be achieved using a flux limiter. The performance of the implementation, in the BOUT++ framework, is also analysed to demonstrate its suitability for application in three-dimensional simulations of turbulent transport in the SOL.



rate research

Read More

Simulations using the fully kinetic neoclassical code XGCa were undertaken to explore the impact of kinetic effects on scrape-off layer (SOL) physics in DIII-D H-mode plasmas. XGCa is a total-f, gyrokinetic code which self-consistently calculates the axisymmetric electrostatic potential and plasma dynamics, and includes modules for Monte Carlo neutral transport. Previously presented XGCa results showed several noteworthy features, including large variations of ion density and pressure along field lines in the SOL, experimentally relevant levels of SOL parallel ion flow (Mach number~0.5), skewed ion distributions near the sheath entrance leading to subsonic flow there, and elevated sheath potentials [R.M. Churchill, Nucl. Mater. & Energy, submitted]. In this paper, we explore in detail the question of pressure balance in the SOL, as it was observed in the simulation that there was a large deviation from a simple total pressure balance (the sum of ion and electron static pressure plus ion inertia). It will be shown that both the contributions from the ion viscosity (driven by ion temperature anisotropy) and neutral source terms can be substantial, and should be retained in the parallel momentum equation in the SOL, but still falls short of accounting for the observed fluid pressure imbalance in the XGCa simulation results.
A four-dimensional plasma model able to describe the scrape-off layer region of tokamak devices at arbitrary collisionality is derived in the drift-reduced limit. The basis of the model is provided by a drift-kinetic equation that retains the full non-linear Coulomb collision operator and describes arbitrarily far from equilibrium distribution functions. By expanding the dependence of distribution function over the perpendicular velocity in a Laguerre polynomial basis and integrating over the perpendicular velocity, a set of four-dimensional moment equations for the expansion coefficients of the distribution function is obtained. The Coulomb collision operator, as well as Poissons equation, are evaluated explicitly in terms of perpendicular velocity moments of the distribution function.
In this work we carry out quantitative measurements of particle and heat transport associated to SOL filaments in a tokamak, and relate density shoulder formation to the advection of energy in the far SOL. For the first time, this attempt includes direct measurements of ion and electron temperatures for background and filaments. With this aim, we combine data from a number of equivalent L-mode discharges from the ASDEX Upgrade tokamak in which different probe heads were installed on the midplane manipulator. This approach is validated by a comparison with independent diagnostics. Results indicate an increase of heat transport associated to filaments after the shoulder formation. Several centimeters into the SOL, filaments are still found to carry a substantial fraction (up to one fifth) of the power ejected at the separatrix.
A complete model of the dynamics of scrape-off layer filaments will be rather complex, including temperature evolution, three dimensional geometry and finite Larmor radius effects. However, the basic mechanism of $boldsymbol{E}timesboldsymbol{B}$ advection due to electrostatic potential driven by the diamagnetic current can be captured in a much simpler model; a complete understanding of the physics in the simpler model will then aid interpretation of more complex simulations, by allowing the new effects to be disentangled. Here we consider such a simple model, which assumes cold ions and isothermal electrons and is reduced to two dimensions. We derive the scaling with width and amplitude of the velocity of isolated scrape-off layer filaments, allowing for arbitrary elliptical cross-sections, where previously only circular cross-sections have been considered analytically. We also put the scaling with amplitude in a new and more satisfactory form. The analytical results are extensively validated with two dimensional simulations and also compared, with reasonable agreement, to three dimensional simulations having minimal variation parallel to the magnetic field.
Non-local closures allow kinetic effects on parallel transport to be included in fluid simulations. This is especially important in the scrape-off layer, but to be useful there the non-local model requires consistent kinetic boundary conditions at the sheath. A non-local closure scheme based on solution of a kinetic equation using a diagonalized moment expansion has been previously reported. We derive a method for imposing kinetic boundary conditions in this scheme and discuss their implementation in BOUT++. To make it feasible to implement the boundary conditions in the code, we are lead to transform the non-local model to a different moment basis, better adapted to describe parallel dynamics. The new basis has the additional benefit of enabling substantial optimization of the closure calculation, resulting in an O(10) speedup of the non-local code.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا