Do you want to publish a course? Click here

Near-infrared luminescence in bismuth-doped TlCl crystal

107   0   0.0 ( 0 )
 Added by Vyacheslav Sokolov
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Experimental and theoretical studies of spectral properties of crystalline TlCl:Bi are performed. Two broad near-infrared luminescence bands with a lifetime about 0.25 ms are observed: a strong band near 1.18 mkm excited by 0.40, 0.45, 0.70 and 0.80 mkm radiation, and a weak band at > 1.5 mkm excited by 0.40 and 0.45 mkm radiation. Computer modeling of Bi-related centers in TlCl lattice suggests that Bi^+__V^-(Cl) center (Bi^+ in Tl site and a negatively charged Cl vacancy in the nearest anion site) is most likely responsible for the IR luminescence.



rate research

Read More

A comparative first-principles study of possible bismuth-related centers in TlCl and CsI crystals is performed and the results of computer modeling are compared with the experimental data. The calculated spectral properties of the bismuth centers suggest that the IR luminescence observed in TlCl:Bi is most likely caused by Bi--Vac(Cl) centers (Bi^+ ion in thallium site and a negatively charged chlorine vacancy in the nearest anion site). On the contrary, Bi^+ substitutional ions and Bi_2^+ dimers are most likely responsible for the IR luminescence observed in CsI:Bi.
Experimental and computer-modeling studies of spectral properties of crystalline AgCl doped with metal bismuth or bismuth chloride are performed. Broad near-IR luminescence band in the 0.8--1.2mkm range with time dependence described by two exponential components corresponding to the lifetimes of 1.5 and 10.3mks is excited mainly by 0.39--0.44mkm radiation. Computer modeling of probable Bi-related centers in AgCl lattice is performed. On the basis of experimental and calculation data a conclusion is drawn that the IR luminescence can be caused by Bi^+ ion centers substituted for Ag^+ ions.
Subvalent bismuth centers (interstitial $Bi^{+}$ ion, Bi$_5^{3+}$ cluster ion, and Bi$_4^0$ cluster) are examined as possible centers of broadband near-IR luminescence in bismuth-doped solids on the grounds of quantum-chemical modeling and experimental data.
Harmonic generation mechanisms are of great interest in nanoscience and nanotechnology, since they allow generating visible light by using near-infrared radiation, which is particularly suitable for its endless applications in bio-nanophotonics and opto-electronics. In this context, multilayer metal-dielectric nanocavities are widely used for light confinement and waveguiding at the nanoscale. They exhibit intense and localized resonances that can be conveniently tuned in the near-infrared and are therefore ideal for enhancing nonlinear effects in this spectral range. In this work, we experimentally investigate the nonlinear optical response of multilayer metal-dielectric nanocavities. By engineering their absorption efficiency and exploiting their intrinsic interface-induced symmetry breaking, we achieve one order of magnitude higher second-harmonic generation efficiency compared to gold nanostructures featuring the same geometry and resonant behavior. In particular, while the third order nonlinear susceptibility is comparable with that of bulk Au, we estimate a second order nonlinear susceptibility of the order of 1 pm/V, which is comparable with that of typical nonlinear crystals. We envision that our system, which combines the advantages of both plasmonic and dielectric materials, might enable the realization of composite and multi-functional nano-systems for an efficient manipulation of nonlinear optical processes at the nanoscale.
Optical-domain Transient Grating (TG) spectroscopy is a versatile background-free four-wave-mixing technique used to probe vibrational, magnetic and electronic degrees of freedom in the time domain. The newly developed coherent X-ray Free Electron Laser sources allow its extension to the X-ray regime. Xrays offer multiple advantages for TG: their large penetration depth allows probing the bulk properties of materials, their element-specificity can address core-excited states, and their short wavelengths create excitation gratings with unprecedented momentum transfer and spatial resolution. We demonstrate for the first time TG excitation in the hard X-ray range at 7.1 keV. In Bismuth Germanate (BGO), the nonresonant TG excitation generates coherent optical phonons detected as a function of time by diffraction of an optical probe pulse. This experiment demonstrates the ability to probe bulk properties of materials and paves the way for ultrafast coherent four-wave-mixing techniques using X-ray probes and involving nanoscale TG spatial periods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا