Do you want to publish a course? Click here

Unavoidable decoherence in the quantum control of an unknown state

106   0   0.0 ( 0 )
 Added by Howard M. Wiseman
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

A common objective for quantum control is to force a quantum system, initially in an unknown state, into a particular target subspace. We show that if the subspace is required to be a decoherence-free subspace of dimension greater than 1, then such control must be decoherent. That is, it will take almost any pure state to a mixed state. We make no assumptions about the control mechanism, but our result implies that for this purpose coherent control offers no advantage, in principle, over the obvious measurement-based feedback protocol.



rate research

Read More

For decades, researchers have sought to understand how the irreversibility of the surrounding world emerges from the seemingly time symmetric, fundamental laws of physics. Quantum mechanics conjectured a clue that final irreversibility is set by the measurement procedure and that the time reversal requires complex conjugation of the wave function, which is overly complex to spontaneously appear in nature. Building on this Landau-Wigner conjecture, it became possible to demonstrate that time reversal is exponentially improbable in a virgin nature and to design an algorithm artificially reversing a time arrow for a given quantum state on the IBM quantum computer. However, the implemented arrow-of-time reversal embraced only the known states initially disentangled from the thermodynamic reservoir. Here we develop a procedure for reversing the temporal evolution of an arbitrary unknown quantum state. This opens the route for general universal algorithms sending temporal evolution of an arbitrary system backwards in time.
Quantum information technologies require careful control for generating and preserving a desired target quantum state. The biggest practical obstacle is, of course, decoherence. Therefore, the reachability analysis, which in our scenario aims to estimate the distance between the controlled state under decoherence and the target state, is of great importance to evaluate the realistic performance of those technologies. This paper presents a lower bound of the fidelity-based distance for a general open Markovian quantum system driven by the decoherence process and several types of control including feedback. The lower bound is straightforward to calculate and can be used as a guide for choosing the target state, as demonstrated in some examples. Moreover, the lower bound is applied to derive a theoretical limit in some quantum metrology problems based on a large-size atomic ensemble under control and decoherence.
We report the experimental measurement of bipartite quantum correlations of an unknown two-qubit state. Using a liquid state Nuclear Magnetic Resonance (NMR) setup and employing geometric discord, we evaluate the quantum correlations of a state without resorting to prior knowledge of its density matrix. The method is applicable to any (2 x d) system and provides, in terms of number of measurements required, an advantage over full state tomography scaling with the dimension d of the unmeasured subsystem. The negativity of quantumness is measured as well for reference. We also observe the phenomenon of sudden transition of quantum correlations when local phase and amplitude damping channels are applied to the state.
One of the essential building blocks of classical computer programs is the if clause, which executes a subroutine depending on the value of a control variable. Similarly, several quantum algorithms rely on applying a unitary operation conditioned on the state of a control system. Here we show that this control cannot be performed by a quantum circuit if the unitary is completely unknown. However, this no-go theorem does not prevent implementing quantum control of unknown unitaries in practice, as any physical implementation of an unknown unitary provides additional information that makes the control possible. We then argue that one should extend the quantum circuit formalism to capture this possibility in a straightforward way. This is done by allowing unknown unitaries to be applied to subspaces and not only to subsystems.
Quantum teleportation provides a disembodied way to transfer an unknown quantum state from one quantum system to another. However, all teleportation experiments to date are limited to cases where the target quantum system contains no prior quantum information. Here we propose a scheme for teleporting a quantum state to a quantum system with prior quantum information. By using an optical qubit-ququart entangling gate, we have experimentally demonstrated the new teleportation protocol -- teleporting a qubit to a photon preloaded with one qubit of quantum information. After the teleportation, the target photon contains two qubits of quantum information, one from the teleported qubit and the other from the pre-existing qubit. The teleportation fidelities range from $0.70$ to $0.92$, all above the classical limit of $2/3$. Our work sheds light on a new direction for quantum teleportation and demonstrates our ability to implement entangling operations beyond two-level quantum systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا