Do you want to publish a course? Click here

6 Batch Injection and Slipped Beam Tune Measurements in Fermilabs Main Injector

138   0   0.0 ( 0 )
 Added by Scott, Duncan
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

During Nova operations it is planned to run the Fermilab Recycler in a 12 batch slip stacking mode. In preparation for this, measurements of the tune during a six batch injection and then as the beam is slipped by changing the RF frequency, but without a 7th injection, have been carried out in the Main Injector. The coherent tune shifts due to the changing beam intensity were measured and compared well with the theoretically expected tune shift. The tune shifts due to changing RF frequency, required for slip stacking, also compare well with the linear theory, although some nonlinear affects are apparent at large frequency changes. These results give us confidence that the expected tunes shifts during 12 batch slip stacking Recycler operations can be accommodated.



rate research

Read More

We discuss the progress made on a new installation in Fermilabs Main Injector that will help investigate the electron cloud phenomenon by making direct measurements of the secondary electron yield (SEY) of samples irradiated in the accelerator. In the Project X upgrade the Main Injector will have its beam intensity increased by a factor of three compared to current operations. This may result in the beam being subject to instabilities from the electron cloud. Measured SEY values can be used to further constrain simulations and aid our extrapolation to Project X intensities. The SEY test-stand, developed in conjunction with Cornell and SLAC, is capable of measuring the SEY from samples using an incident electron beam when the samples are biased at different voltages. We present the design and manufacture of the test-stand and the results of initial laboratory tests on samples prior to installation.
93 - R. Zwaska 2004
To date, the 120 GeV Fermilab Main Injector accelerator has accelerated a single batch of protons from the 8 GeV rapid-cycling Booster synchrotron for production of antiprotons for Run II. In the future, the Main Injector must accelerate 6 or more Booster batches simultaneously; the first will be extracted to the antiproton source, while the remaining are extracted for the NuMI/MINOS (Neutrinos at the Main Injector / Main Injector Neutrino Oscillation Search) neutrino experiment. Performing this multi-batch operation while avoiding unacceptable radioactivation of the beamlines requires a previously unnecessary synchronization between the accelerators. We describe a mechanism and present results of advancing or retarding the longitudinal progress of the Booster beam by active feedback radial manipulation of the beam during the acceleration period.
From 2005 through 2012, the Fermilab Main Injector provided intense beams of 120 GeV protons to produce neutrino beams and antiprotons. Hardware improvements in conjunction with improved diagnostics allowed the system to reach sustained operation at ~400 kW beam power. Transmission was very high except for beam lost at or near the 8 GeV injection energy where 95% beam transmission results in about 1.5 kW of beam loss. By minimizing and localizing loss, residual radiation levels fell while beam power was doubled. Lost beam was directed to either the collimation system or to the beam abort. Critical apertures were increased while improved instrumentation allowed optimal use of available apertures. We will summarize the improvements required to achieve high intensity, the impact of various loss control tools and the status and trends in residual radiation in the Main Injector.
This paper presents the modeling of time-structured multiturn injection for an upgraded Main Injector with the 8-GeV Superconducting RF proton driver, or an ILC-style linac, or a Project-X linac. The Radio-Frequency mismatch between a linac and the upgraded Main Injector will induce parasitic longitudinal painting in RF-phase direction. Several different scenarios with a choice of different RF parameters for single RF system and double RF system in the presence of longitudinal space charge have been investigated. From the studies of microbunch injection with the aid of ESME (2003) numerical simulations, it is found that the dual RF system with a choice of appropriate RF parameters allows us to overcome the space-charge limitation set by beam intensity during the multiturn-injection process. A double RF system with a harmonic ratio (R_H = H_2/H_1) of 2.0 and a voltage ratio (R_V = V_2/V_1) of 0.5 are most favored to reduce both longitudinal and transverse effects of space charge in the Main Injector.
The SwissFEL Injector Test Facility operated at the Paul Scherrer Institute between 2010 and 2014, serving as a pilot plant and testbed for the development and realization of SwissFEL, the X-ray Free-Electron Laser facility under construction at the same institute. The test facility consisted of a laser-driven rf electron gun followed by an S-band booster linac, a magnetic bunch compression chicane and a diagnostic section including a transverse deflecting rf cavity. It delivered electron bunches of up to 200 pC charge and up to 250 MeV beam energy at a repetition rate of 10 Hz. The measurements performed at the test facility not only demonstrated the beam parameters required to drive the first stage of an FEL facility, but also led to significant advances in instrumentation technologies, beam characterization methods and the generation, transport and compression of ultra-low-emittance beams. We give a comprehensive overview of the commissioning experience of the principal subsystems and the beam physics measurements performed during the operation of the test facility, including the results of the test of an in-vacuum undulator prototype generating radiation in the vacuum ultraviolet and optical range.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا