Observational constraints on the powering mechanism of transient relativistic jets


Abstract in English

We revisit the paradigm of the dependency of jet power on black hole spin in accreting black hole systems. In a previous paper we showed that the luminosity of compact jets continuously launched due to accretion onto black holes in X-ray binaries (analogous to those that dominate the kinetic feedback from AGN) do not appear to correlate with reported black hole spin measurements. It is therefore unclear whether extraction of the black hole spin energy is the main driver powering compact jets from accreting black holes. Occasionally, black hole X-ray binaries produce discrete, transient (ballistic) jets for a brief time over accretion state changes. Here, we quantify the dependence of the power of these transient jets (adopting two methods to infer the jet power) on black hole spin, making use of all the available data in the current literature, which includes 12 BHs with both measured spin parameters and radio flares over the state transition. In several sources, regular, well-sampled radio monitoring has shown that the peak radio flux differs dramatically depending on the outburst (up to a factor of 1000) whereas the total power required to energise the flare may only differ by a factor ~< 4 between outbursts. The peak flux is determined by the total energy in the flare and the time over which it is radiated (which can vary considerably between outbursts). Using a Bayesian fitting routine we rule out a statistically significant positive correlation between transient jet power measured using these methods, and current estimates of black hole spin. Even when selecting subsamples of the data that disregard some methods of black hole spin measurement or jet power measurement, no correlation is found in all cases.

Download