Do you want to publish a course? Click here

Observational constraints on the powering mechanism of transient relativistic jets

121   0   0.0 ( 0 )
 Added by David Russell
 Publication date 2013
  fields Physics
and research's language is English
 Authors D. M. Russell




Ask ChatGPT about the research

We revisit the paradigm of the dependency of jet power on black hole spin in accreting black hole systems. In a previous paper we showed that the luminosity of compact jets continuously launched due to accretion onto black holes in X-ray binaries (analogous to those that dominate the kinetic feedback from AGN) do not appear to correlate with reported black hole spin measurements. It is therefore unclear whether extraction of the black hole spin energy is the main driver powering compact jets from accreting black holes. Occasionally, black hole X-ray binaries produce discrete, transient (ballistic) jets for a brief time over accretion state changes. Here, we quantify the dependence of the power of these transient jets (adopting two methods to infer the jet power) on black hole spin, making use of all the available data in the current literature, which includes 12 BHs with both measured spin parameters and radio flares over the state transition. In several sources, regular, well-sampled radio monitoring has shown that the peak radio flux differs dramatically depending on the outburst (up to a factor of 1000) whereas the total power required to energise the flare may only differ by a factor ~< 4 between outbursts. The peak flux is determined by the total energy in the flare and the time over which it is radiated (which can vary considerably between outbursts). Using a Bayesian fitting routine we rule out a statistically significant positive correlation between transient jet power measured using these methods, and current estimates of black hole spin. Even when selecting subsamples of the data that disregard some methods of black hole spin measurement or jet power measurement, no correlation is found in all cases.



rate research

Read More

Bose-Einstein condensates (BECs) have been proposed as candidate states of matter for the interior of neutron stars. Specifically, Chavanis and Harko obtained the mass-radius relation for a BEC star and proposed that the recently discovered neutron stars with masses around 2$M_odot$ are BEC stars. They employed a barotropic equation of state (EOS), with one free parameter, that was first found by Colpi, Wasserman, and Shapiro (CSW), to describe them and derive stable equilibrium configurations of spinning BEC stars in General Relativity. In this work we show that while it is true that BECs allow for compact object masses as heavy as the heaviest observed ones, such stars cannot simultaneously have radii that are small enough to be consistent with the latest observations, in spite of the flexibility available in the EOS in the form of the free parameter. In fact, our conclusion applies to any spinning relativistic boson star that obeys the CSW EOS.
82 - Di Xiao , Bin-Bin Zhang , 2019
Very recently citet{XueYQ2019} reported an important detection of the X-ray transient, CDF-S XT2, whose light curve is analogous to X-ray plateau features of gamma-ray burst afterglows. They suggested that this transient is powered by a remnant stable magnetar from a binary neutron star merger since several pieces of evidence (host galaxy, location, and event rate) all point toward such an assumption. In this paper, we revisit this scenario and confirm that this X-ray emission can be well explained by the internal gradual magnetic dissipation process in an ultra-relativistic wind of the newborn magnetar. We show that both the light curve and spectral evolution of CDF-S XT2 can be well fitted by such a model. Furthermore, we can probe some key properties of the central magnetar, such as its initial spin period, surface magnetic field strength and wind saturation Lorentz factor.
Blazars are a subclass of radio-loud active galactic nuclei (AGNs), where the jet is aligned close to the line of sight. Blazars emission is dominated by non-thermal processes, where Doppler boosted radiation originates from a relativistic population of charged particles within the jet. From radio to TeV energies, blazars are highly variable on timescales from minutes to several months. There are several mechanisms proposed to explain variability, including changes in the viewing angle of the jet, propagating along the rotation axis of the accretion disc. The misalignment of a supermassive black hole (SMBH) spin and the angular momentum of the accretion disc yields to Lense-Thirring precession of such tilted disc, which leads to the variation of Doppler beaming. Such scenario is supported by radio observations of jet precession observed in some AGNs. The radio-emitting regions, however, are located far from the central engine, and thus the observed time scales in this band can be affected by e.g. a variation of the bulk Lorentz factor along the jet. In this contribution, we derive expected time scales of the jet wobbling using SMBH masses and compare them with the time intervals between flares in long-term (over 15 years) X-ray light curves of bright blazars observed by Swift-XRT. We found that for Mrk 421, Mrk 501 and 3C 273, the derived time scales are consistent with the observational constraints, while for 1ES 1959+650 we are mostly limited by uncertainty in the Doppler beaming factor.
We have studied the inner regions of the LINER galaxy NGC1052 since the mid 1990s at high resolution with 15 GHz very-long-baseline interferometry observations. A compact, two-sided jet structure is revealed, with multiple sub-parsec scale features moving outward from the central region with typical speeds of 0.26 c. Complementary to this, since early 2005 we are performing a multi-mission campaign of observations of this source, including X-ray spectroscopy, X-ray, and radio flux density monitoring, and VLBA observations at 22 GHz and 43 GHz. X-ray variability is present at time scales of weeks, comparable with the structural changes observed by VLBI. Here we present first results of the high-resolution imaging observations and discuss these findings in the context of the multi-band campaign.
There are several methods to calculate the radiative and kinetic power of relativistic jets, but their results can differ by one or two orders of magnitude. Therefore, it is necessary to perform a calibration of the jet power, to understand the reasons for these differences (whether wrong hypotheses or intrinsic source variability), and if it is possible to converge to a reliable measurement of this physical quantity. We present preliminary results of a project aimed at calibrating the power of relativistic jets in active galactic nuclei (AGN) and X-ray binaries (XRB). We started by selecting all the AGN associations with known redshift in the Fourth Fermi LAT Gamma-Ray Catalog (4FGL). We then calculated the radiative and/or kinetic powers from available data or we extracted this information from literature. We compare the values obtained for overlapping samples and highlight early conclusions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا