Do you want to publish a course? Click here

Habitable Zones Around Main-Sequence Stars: New Estimates

121   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Identifying terrestrial planets in the habitable zones (HZs) of other stars is one of the primary goals of ongoing radial velocity and transit exoplanet surveys and proposed future space missions. Most current estimates of the boundaries of the HZ are based on 1-D, cloud-free, climate model calculations by Kasting et al.(1993). The inner edge of the HZ in Kasting et al.(1993) model was determined by loss of water, and the outer edge was determined by the maximum greenhouse provided by a CO2 atmosphere. A conservative estimate for the width of the HZ from this model in our Solar system is 0.95-1.67 AU. Here, an updated 1-D radiative-convective, cloud-free climate model is used to obtain new estimates for HZ widths around F, G, K and M stars. New H2O and CO2 absorption coefficients, derived from the HITRAN 2008 and HITEMP 2010 line-by-line databases, are important improvements to the climate model. According to the new model, the water loss (inner HZ) and maximum greenhouse (outer HZ) limits for our Solar System are at 0.99 AU and 1.70 AU, respectively, suggesting that the present Earth lies near the inner edge. Additional calculations are performed for stars with effective temperatures between 2600 K and 7200 K, and the results are presented in parametric form, making them easy to apply to actual stars. The new model indicates that, near the inner edge of the HZ, there is no clear distinction between runaway greenhouse and water loss limits for stars with T_{eff} ~< 5000 K which has implications for ongoing planet searches around K and M stars. To assess the potential habitability of extrasolar terrestrial planets, we propose using stellar flux incident on a planet rather than equilibrium temperature. Our model does not include the radiative effects of clouds; thus, the actual HZ boundaries may extend further in both directions than the estimates just given.



rate research

Read More

Habitable zones are regions around stars where large bodies of liquid water can be sustained on a planet or satellite. As many stars form in binary systems with non-zero eccentricity, the habitable zones around the component stars of the binary can overlap and be enlarged when the two stars are at periastron (and less often when the stars are at apastron). We perform N-body simulations of the evolution of dense star-forming regions and show that binary systems where the component stars originally have distinct habitable zones can undergo interactions that push the stars closer together, causing the habitable zones to merge and become enlarged. Occasionally, overlapping habitable zones can occur if the component stars move further apart, but the binary becomes more eccentric. Enlargement of habitable zones happens to 1-2 binaries from an average initial total of 352 in each simulated star-forming region, and demonstrates that dense star-forming regions are not always hostile environments for planet formation and evolution.
We investigate the hypothesis that the size of the habitable zone around hardened binaries in dense star-forming regions increases. Our results indicate that this hypothesis is essentially incorrect. Although certain binary star configurations permit extended habitable zones, such setups typically require all orbits in a system to be near circular. In all other cases planets can only remain habitable if they display an extraordinarily high climate inertia.
A warm/hot dust component (at temperature $>$ 300K) has been detected around $sim$ 20% of stars. This component is called exozodiacal dust as it presents similarities with the zodiacal dust detected in our Solar System, even though its physical properties and spatial distribution can be significantly different. Understanding the origin and evolution of this dust is of crucial importance, not only because its presence could hamper future detections of Earth-like planets in their habitable zones, but also because it can provide invaluable information about the inner regions of planetary systems. In this review, we present a detailed overview of the observational techniques used in the detection and characterisation of exozodiacal dust clouds (exozodis) and the results they have yielded so far, in particular regarding the incidence rate of exozodis as a function of crucial parameters such as stellar type and age, or the presence of an outer cold debris disc. We also present the important constraints that have been obtained, on dust size distribution and spatial location, by using state-of-the-art radiation transfer models on some of these systems. Finally, we investigate the crucial issue of how to explain the presence of exozodiacal dust around so many stars (regardless of their ages) despite the fact that such dust so close to its host star should disappear rapidly due to the coupled effect of collisions and stellar radiation pressure. Several potential mechanisms have been proposed to solve this paradox and are reviewed in detail in this paper. The review finishes by presenting the future of this growing field.
Millimetre continuum observations of debris discs can provide insights into the physical and dynamical properties of the unseen planetesimals that these discs host. The material properties and collisional models of planetesimals leave their signature on the grain size distribution, which can be traced through the millimetre spectral index. We present 8.8 mm observations of the debris discs HD 48370, CPD 72 2713, HD 131488, and HD 32297 using the Australian Telescope Compact Array (ATCA) as part of the PLanetesimals Around TYpicalPre-main seqUence Stars (PLATYPUS) survey. We detect all four targets with a characteristic beam size of 5 arcseconds and derive a grain size distribution parameter that is consistent with collisional cascade models and theoretical predictions for parent planetesimal bodies where binding is dominated by self-gravity. We combine our sample with 19 other millimetre-wavelength detected debris discs from the literature and calculate a weighted mean grain size power law index which is close to analytical predictions for a classical steady state collisional cascade model. We suggest the possibility of two distributions of q in our debris disc sample; a broad distribution (where q is approximately 3.2 to 3.7) for typical debris discs (gas-poor/non-detection), and a narrow distribution (where q is less than 3.2) for bright gas-rich discs. Or alternatively, we suggest that there exists an observational bias between the grain size distribution parameter and absolute flux which may be attributed to the detection rates of faint debris discs at cm wavelengths.
We analyzed the thermodynamics of hypothetical exoplanets at very low Keplerian circular orbits in close vicinity of rapidly spinning supermassive black holes. Such black hole exoplanets are heated by strongly blueshifted and focused flux of the incoming cosmic microwave background (CMB) and cooled by the cold part of the local sky containing the black hole shadow. This gives rise to a temperature difference, which can drive processes far from thermodynamic equilibrium in a hypothetical life form inhabiting black hole exoplanets, similar to the case of a planet heated by the radiation of the parent star and cooled by the night sky. We found that for a narrow range of radii of very low Keplerian circular orbits and for very high spin of a supermassive black hole, the temperature regime of the black hole exoplanets corresponds to the habitable zone around standard stars. The thermodynamics of black hole exoplanets therefore, in principle, does not exclude the existence of life based on known biology. The peak of the multiblackbody spectral profile of the CMB heating the exoplanet is located in the ultraviolet band, but a significant fraction of the flux comes also in the visible and infrared bands. The minimum mass of a black hole ensuring the resistance to tidal disruption of an Earth-like exoplanet orbiting in the habitable zone is estimated to $1.63 cdot 10^8 , m_{odot}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا