No Arabic abstract
We demonstrate that arbitrary time evolutions of many-body quantum systems can be reversed even in cases when only part of the Hamiltonian can be controlled. The reversed dynamics obtained via optimal control --contrary to standard time-reversal procedures-- is extremely robust to external sources of noise. We provide a lower bound on the control complexity of a many-body quantum dynamics in terms of the dimension of the manifold supporting it, elucidating the role played by integrability in this context.
Quantum many-body systems exhibit a rich and diverse range of exotic behaviours, owing to their underlying non-classical structure. These systems present a deep structure beyond those that can be captured by measures of correlation and entanglement alone. Using tools from complexity science, we characterise such structure. We investigate the structural complexities that can be found within the patterns that manifest from the observational data of these systems. In particular, using two prototypical quantum many-body systems as test cases - the one-dimensional quantum Ising and Bose-Hubbard models - we explore how different information-theoretic measures of complexity are able to identify different features of such patterns. This work furthers the understanding of fully-quantum notions of structure and complexity in quantum systems and dynamics.
Finite-size error (FSE), the discrepancy between an observable in a finite system and in the thermodynamic limit, is ubiquitous in numerical simulations of quantum many body systems. Although a rough estimate of these errors can be obtained from a sequence of finite-size results, a strict, quantitative bound on the magnitude of FSE is still missing. Here we derive rigorous upper bounds on the FSE of local observables in real time quantum dynamics simulations initialized from a product state. In $d$-dimensional locally interacting systems with a finite local Hilbert space, our bound implies $ |langle hat{S}(t)rangle_L-langle hat{S}(t)rangle_infty|leq C(2v t/L)^{cL-mu}$, with $v$, $C$, $c$, $mu $ constants independent of $L$ and $t$, which we compute explicitly. For periodic boundary conditions (PBC), the constant $c$ is twice as large as that for open boundary conditions (OBC), suggesting that PBC have smaller FSE than OBC at early times. The bound can be generalized to a large class of correlated initial states as well. As a byproduct, we prove that the FSE of local observables in ground state simulations decays exponentially with $L$, under a suitable spectral gap condition. Our bounds are practically useful in determining the validity of finite-size results, as we demonstrate in simulations of the one-dimensional (1D) quantum Ising and Fermi-Hubbard models.
Thermodynamics of quantum systems out-of-equilibrium is very important for the progress of quantum technologies, however, the effects of many body interactions and their interplay with temperature, different drives and dynamical regimes is still largely unknown. Here we present a systematic study of these interplays: we consider a variety of interaction (from non-interacting to strongly correlated) and dynamical (from sudden quench to quasi-adiabatic) regimes, and draw some general conclusions in relation to work extraction and entropy production. As treatment of many-body interacting systems is highly challenging, we introduce a simple approximation which includes, for the average quantum work, many-body interactions only via the initial state, while the dynamics is fully non-interacting. We demonstrate that this simple approximation is surprisingly good for estimating both the average quantum work and the related entropy variation, even when many-body correlations are significant.
Controlling non-equilibrium quantum dynamics in many-body systems is an outstanding challenge as interactions typically lead to thermalization and a chaotic spreading throughout Hilbert space. We experimentally investigate non-equilibrium dynamics following rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions. Using a programmable quantum simulator based on Rydberg atom arrays, we probe coherent revivals corresponding to quantum many-body scars. Remarkably, we discover that scar revivals can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order. We map Hilbert space dynamics, geometry dependence, phase diagrams, and system-size dependence of this emergent phenomenon, demonstrating novel ways to steer entanglement dynamics in many-body systems and enabling potential applications in quantum information science.
The spectral form factor (SFF), characterizing statistics of energy eigenvalues, is a key diagnostic of many-body quantum chaos. In addition, partial spectral form factors (pSFFs) can be defined which refer to subsystems of the many-body system. They provide unique insights into energy eigenstate statistics of many-body systems, as we show in an analysis on the basis of random matrix theory and of the eigenstate thermalization hypothesis. We propose a protocol which allows the measurement of SFF and pSFFs in quantum many-body spin models, within the framework of randomized measurements. Aimed to probe dynamical properties of quantum many-body systems, our scheme employs statistical correlations of local random operations which are applied at different times in a single experiment. Our protocol provides a unified testbed to probe many-body quantum chaotic behavior, thermalization and many-body localization in closed quantum systems which we illustrate with simulations for Hamiltonian and Floquet many-body spin-systems.