In Fermilab we are build and tested several superconducting Single Spoke Resonators (SSR1, beta=0.22) which can be used for acceleration of low beta ions. Fist two cavities performed very well during cold test in Vertical Test Station at FNAL. One dressed cavity was also tested successfully in Horizontal Test Station. Currently we are building 8 cavity cryomodule for PIXIE project. Additional 10 cavities were manufactured in the industry and on-going cold test results will be presented in this poster.
Two standing-wave single-cell choke-mode damped structures with different choke dimensions which worked at 11.424 GHz were designed, manufactured and tuned by accelerator group in Tsinghua University. High power test was carried out to study choke-mode structures properties in high gradient and related breakdown phenomenon. A single-cell structure without choke which almost has the same inner dimension as choke-mode structure was also tested as a comparison to study how the choke affects high-gradient properties. In this paper, we report on the latest status of the high power test, including various observations and the experimental results.
A perpendicularly biased tuneable 2nd harmonic cavity is being constructed for use in the Fermilab Booster. The cavitys tuner uses National Magnetics AL800 garnet as the tuning media. For quality control, the magnetic properties of the material and the uniformity of the properties within the tuner must be assessed. We describe two tests which are performed on the rings and on their corresponding witness samples.
A perpendicularly biased 2nd harmonic cavity is being designed and built for the Fermilab Booster. Its purpose is to flatten the bucket at injection and thus change the longitudinal beam distribution to decrease space charge effects. It can also help at extraction. The cavity frequency range is 76 - 106 MHz. The power amplifier will be built using the Y567B tetrode, which is also used for the fundamental mode cavities in the Fermilab Booster. We discuss recent progress on the cavity, the biasing solenoid design and plans for testing the tuners garnet material.
We present a general method to derive the magnetic field dependence of the surface resistance of superconductors from the Q-curves obtained during the cryogenic tests of cavities. The results are applied to coaxial half-wave cavities, TM-like elliptical accelerating cavities, and cavities of more complicated geometries.
Crab crossing is essential for high-luminosity colliders. The High Luminosity Large Hadron Collider (HL-LHC) will equip one of its Interaction Points (IP1) with Double-Quarter Wave (DQW) crab cavities. A DQW cavity is a new generation of deflecting RF cavities that stands out for its compactness and broad frequency separation between fundamental and first high-order modes. The deflecting kick is provided by its fundamental mode. Each HL-LHC DQW cavity shall provide a nominal deflecting voltage of 3.4 MV, although up to 5.0 MV may be required. A Proof-of-Principle (PoP) DQW cavity was limited by quench at 4.6 MV. This paper describes a new, highly optimized cavity, designated DQW SPS-series, which satisfies dimensional, cryogenic, manufacturing and impedance requirements for beam tests at SPS and operation in LHC. Two prototypes of this DQW SPS-series were fabricated by US industry and cold tested after following conventional SRF surface treatment. Both units outperformed the PoP cavity, reaching a deflecting voltage of 5.3-5.9 MV. This voltage - the highest reached by a DQW cavity - is well beyond the nominal voltage of 3.4 MV and may even operate at the ultimate voltage of 5.0MVwith sufficient margin. This paper covers fabrication, surface preparation and cryogenic RF test results and implications.