Do you want to publish a course? Click here

GRB 080407: an ultra-long burst discovered by the IPN

174   0   0.0 ( 0 )
 Added by Valentin Pal'shin
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present observations of the extremely long GRB 080704 obtained with the instruments of the Interplanetary Network (IPN). The observations reveal two distinct emission episodes, separated by a ~1500 s long period of quiescence. The total burst duration is about 2100 s. We compare the temporal and spectral characteristics of this burst with those obtained for other ultra-long GRBs and discuss these characteristics in the context of different models.



rate research

Read More

GRB 130925A was an unusual GRB, consisting of 3 distinct episodes of high-energy emission spanning $sim$20 ks, making it a member of the proposed category of `ultra-long bursts. It was also unusual in that its late-time X-ray emission observed by Swift was very soft, and showed a strong hard-to-soft spectral evolution with time. This evolution, rarely seen in GRB afterglows, can be well modelled as the dust-scattered echo of the prompt emission, with stringent limits on the contribution from the normal afterglow (i.e. external shock) emission. We consider and reject the possibility that GRB 130925A was some form of tidal disruption event, and instead show that if the circumburst density around GRB 130925A is low, the long duration of the burst and faint external shock emission are naturally explained. Indeed, we suggest that the ultra-long GRBs as a class can be explained as those with low circumburst densities, such that the deceleration time (at which point the material ejected from the nascent black hole is decelerated by the circumburst medium) is $sim$20 ks, as opposed to a few hundred seconds for the normal long GRBs. The increased deceleration radius means that more of the ejected shells can interact before reaching the external shock, naturally explaining both the increased duration of GRB 130925A, the duration of its prompt pulses, and the fainter-than-normal afterglow.
The TESS exoplanet-hunting mission detected the rising and decaying optical afterglow of GRB 191016A, a long Gamma-Ray Burst (GRB) detected by Swift-BAT but without prompt XRT or UVOT follow-up due to proximity to the moon. The afterglow has a late peak at least 1000 seconds after the BAT trigger, with a brightest-detected TESS datapoint at 2589.7 s post-trigger. The burst was not detected by Fermi-LAT, but was detected by Fermi-GBM without triggering, possibly due to the gradual nature of rising light curve. Using ground-based photometry, we estimate a photometric redshift of $z_mathrm{phot} = 3.29pm{0.40}$. Combined with the high-energy emission and optical peak time derived from TESS, estimates of the bulk Lorentz factor $Gamma_mathrm{BL}$ range from $90-133$. The burst is relatively bright, with a peak optical magnitude in ground-based follow-up of $R=15.1$ mag. Using published distributions of GRB afterglows and considering the TESS sensitivity and sampling, we estimate that TESS is likely to detect $sim1$ GRB afterglow per year above its magnitude limit.
167 - B. Gendre 2011
The Swift burst GRB 110205A was a very bright burst visible in the Northern hemisphere. GRB 110205A was intrinsically long and very energetic and it occurred in a low-density interstellar medium environment, leading to delayed afterglow emission and a clear temporal separation of the main emitting components: prompt emission, reverse shock, and forward shock. Our observations show several remarkable features of GRB 110205A : the detection of prompt optical emission strongly correlated with the BAT light curve, with no temporal lag between the two ; the absence of correlation of the X-ray emission compared to the optical and high energy gamma-ray ones during the prompt phase ; and a large optical re-brightening after the end of the prompt phase, that we interpret as a signature of the reverse shock. Beyond the pedagogical value offered by the excellent multi-wavelength coverage of a GRB with temporally separated radiating components, we discuss several questions raised by our observations: the nature of the prompt optical emission and the spectral evolution of the prompt emission at high-energies (from 0.5 keV to 150 keV) ; the origin of an X-ray flare at the beginning of the forward shock; and the modeling of the afterglow, including the reverse shock, in the framework of the classical fireball model.
A new class of ultra-long duration (>10,000 s) gamma-ray bursts has recently been suggested. They may originate in the explosion of stars with much larger radii than normal long gamma-ray bursts or in the tidal disruptions of a star. No clear supernova had yet been associated with an ultra-long gamma-ray burst. Here we report that a supernova (2011kl) was associated with the ultra-long duration burst 111209A, at z=0.677. This supernova is more than 3 times more luminous than type Ic supernovae associated with long gamma-ray bursts, and its spectrum is distinctly different. The continuum slope resembles those of super-luminous supernovae, but extends farther down into the rest-frame ultra-violet implying a low metal content. The light curve evolves much more rapidly than super-luminous supernovae. The combination of high luminosity and low metal-line opacity cannot be reconciled with typical type Ic supernovae, but can be reproduced by a model where extra energy is injected by a strongly magnetized neutron star (a magnetar), which has also been proposed as the explanation for super-luminous supernovae.
We present a broadband study of gamma-ray burst (GRB) 091024A within the context of other ultra-long-duration GRBs. An unusually long burst detected by Konus-Wind, Swift, and Fermi, GRB 091024A has prompt emission episodes covering ~1300 s, accompanied by bright and highly structured optical emission captured by various rapid-response facilities, including the 2-m autonomous robotic Faulkes North and Liverpool Telescopes, KAIT, S-LOTIS, and SRO. We also observed the burst with 8- and 10-m class telescopes and determine the redshift to be z = 1.0924 pm 0.0004. We find no correlation between the optical and gamma-ray peaks and interpret the optical light curve as being of external origin, caused by the reverse and forward shock of a highly magnetized jet (R_B ~ 100-200). Low-level emission is detected throughout the near-background quiescent period between the first two emission episodes of the Konus-Wind data, suggesting continued central-engine activity; we discuss the implications of this ongoing emission and its impact on the afterglow evolution and predictions. We summarize the varied sample of historical GRBs with exceptionally long durations in gamma-rays (>~ 1000 s) and discuss the likelihood of these events being from a separate population; we suggest ultra-long GRBs represent the tail of the duration distribution of the long GRB population.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا