Infinite product representations for kernels and iterations of functions


Abstract in English

We study infinite products of reproducing kernels with view to their use in dynamics (of iterated function systems), in harmonic analysis, and in stochastic processes. On the way, we construct a new family of representations of the Cuntz relations. Then, using these representations we associate a fixed filled Julia set with a Hilbert space. This is based on analysis and conformal geometry of a fixed rational mapping $R$ in one complex variable, and its iterations.

Download