MeV electrons detected by the Alice UV spectrograph during the New Horizons flyby of Jupiter


Abstract in English

In early 2007, the New Horizons spacecraft flew through the Jovian magnetosphere on the dusk side. Here, we present results from a novel means of detecting energetic electrons along New Horizons trajectory: the background count rate of the Alice ultraviolet spectrograph. Electrons with energies >1 MeV can penetrate the thin aluminum housing of Alice, interact with the microchannel plate detector, and produce a count that is indistinguishable from an FUV photon. We present Alice data, proportional to the MeV electron flux, from an 11-day period centered on the spacecrafts closest approach to Jupiter, and compare it to electron data from the PEPSSI instrument. We find that a solar wind compression event passed over the spacecraft just prior to it entering the Jovian magnetosphere. Subsequently, the magnetopause boundary was detected at a distance of 67 R_J suggesting a compressed magnetospheric configuration. Three days later, when the spacecraft was 35-90 R_J downstream of Jupiter, New Horizons observed a series of 15 current sheet crossings, all of which occurred significantly northward of model predictions implying solar wind influence over the middle and outer Jovian magnetosphere, even to radial distances as small as ~35 R_J. In addition, we find the Jovian current sheet, which had a half-thickness of at least 7.4 R_J between 1930 and 2100 LT abruptly thinned to a thickness of ~3.4 R_J around 2200 LT.

Download