Transit timing variations in WASP-10b induced by stellar activity?


Abstract in English

The hot-Jupiter WASP-10b was reported by Maciejewski et al. (2011a,b) to show transit timing variations (TTV) with an amplitude of ~ 3.5 minutes. These authors proposed that the observed TTVs were caused by a 0.1 MJup perturbing companion with an orbital period of ~ 5.23 d, and hence, close to the outer 5:3 mean motion resonance with WASP-10b. To test this scenario, we present eight new transit light curves of WASP-10b obtained with the Faulkes Telescope North and the Liverpool Telescope. The new light curves, together with 22 previously published ones, were modelled with a Markov-Chain Monte-Carlo transit fitting code. (...) Our homogeneously derived transit times do not support the previous claimed TTV signal, which was strongly dependent on 2 previously published transits that have been incorrectly normalised. Nevertheless, a linear ephemeris is not a statistically good fit to the transit times of WASP-10b. We show that the observed transit time variations are due to spot occultation features or systematics. We discuss and exemplify the effects of occultation spot features in the measured transit times and show that despite spot occultation during egress and ingress being difficult to distinguish in the transit light curves, they have a significant effect in the measured transit times. We conclude that if we account for spot features, the transit times of WASP-10 are consistent with a linear ephemeris with the exception of one transit (epoch 143) which is a partial transit. Therefore, there is currently no evidence for the existence of a companion to WASP-10b. Our results support the lack of TTVs of hot-Jupiters reported for the Kepler sample.

Download