Do you want to publish a course? Click here

Following Strain-Induced Mosaicity Changes of Ferroelectric Thin Films by Ultrafast Reciprocal Space Mapping

107   0   0.0 ( 0 )
 Added by Daniel Schick
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate coherent phonon propagation in a thin film of ferroelectric PbZr0.2Ti0.8O3 (PZT) by ultrafast x-ray diffraction (UXRD) experiments, which are analyzed as time-resolved reciprocal space mapping (RSM) in order to observe the in- and out-of-plane structural dynamics simultaneously. The mosaic structure of the PZT leads to a coupling of the excited out-of-plane expansion to in-plane lattice dynamics on a picosecond timescale, which is not observed for out-of-plane compression.



rate research

Read More

We report grazing incidence small angle neutron scattering (GISANS) and complementary off-specular neutron reflectometry (OSR) of the magnetic order in a single-crystalline epitaxial MnSi film on Si(111) in the thick film limit. Providing a means of direct reciprocal space mapping, GISANS and OSR reveal a magnetic modulation perpendicular to the films under magnetic fields parallel and perpendicular to the film, where additional polarized neutron reflectometry (PNR) and magnetization measurements are in excellent agreement with the literature. Regardless of field orientation, our data does not suggest the presence of more complex spin textures, notably the formation of skyrmions. This observation establishes a distinct difference with bulk samples of MnSi of similar thickness under perpendicular field, in which a skyrmion lattice dominates the phase diagram. Extended x-ray absorption fine structure measurements suggest that small shifts of the Si positions within the unstrained unit cell control the magnetic state, representing the main difference between the films and thin bulk samples.
The effects of space charges on hysteresis loops and field distributions in ferroelectrics have been investigated numerically using the phenomenological Landau-Ginzburg-Devonshire theory. Cases with the ferroelectric fully and partially depleted have been considered. In general, increasing the number of charged impurities results in a lowering of the polarization and coercive field values. Squarer loops were observed in the partially depleted cases and a method was proposed to identify fully depleted samples experimentally from dielectric and polarization measurements alone. Unusual field distributions found for higher dopant concentrations have some interesting implications for leakage mechanisms and limit the range of validity of usual semiconductor equations for carrier transport.
In this study, thin elastic films supported on a rigid substrate are brought into contact with a spherical glass indenter. Upon contact, adhesive fingers emerge at the periphery of the contact patch with a characteristic wavelength. Elastic films are also pre-strained along one axis before initiation of contact, causing the fingering pattern to become anisotropic and align with the axis along which the strain was applied. This transition from isotropic to anisotropic patterning is characterized quantitatively and a simple model is developed to understand the origin of the anisotropy.
The critical impact of epitaxial stress on the stabilization of the ferroelectric orthorhombic phase of hafnia is proved. Epitaxial bilayers of Hf0.5Zr0.5O2 and La0.67Sr0.33MnO3 electrodes were grown on a set of single crystalline oxide 001-oriented, cubic or pseudocubic setting, substrates with lattice parameter in the 3.71 - 4.21 A range. The lattice strain of the La0.67Sr0.33MnO3 electrode, determined by the lattice mismatch with the substrate, is critical in the stabilization of the orthorhombic phase of Hf0.5Zr0.5O2. On La0.67Sr0.33MnO3 electrodes tensile strained most of the Hf0.5Zr0.5O2 film is orthorhombic, whereas the monoclinic phase is favored when La0.67Sr0.33MnO3 is relaxed or compressively strained. Therefore, the Hf0.5Zr0.5O2 films on TbScO3 and GdScO3 substrates present substantially enhanced ferroelectric polarization in comparison to films on other substrates, including the commonly used SrTiO3. The capability of having epitaxial doped HfO2 films with controlled phase and polarization is of major interest for a better understanding of the ferroelectric properties and paves the way for fabrication of ferroelectric devices based on nanometric HfO2 films.
We show that misfit strain originated from the film-substrate lattice mismatch strongly increases the value of the quadratic magnetoelectric coupling. The giant magnetoelectric coupling, size effects and misfit strain cause strong changes of ferroic films phase diagrams at zero external magnetic and electric fields, in particular, the transformation of antiferromagnetic phase into ferromagnetic or ferrimagnetic ones for compressive or tensile misfit strains correspondingly as well as thickness induced paramagnetic or/and paraelectric phases appearance. Ferromagnetism appearance and magnetoelectric coupling increase in thin ferroelectric-antiferromagnetic films is in agreement with available experimental data and opens the way for tailoring of ferroic films magnetic and electric properties.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا