Do you want to publish a course? Click here

Spatial and luminosity distributions of galactic satellites

77   0   0.0 ( 0 )
 Added by Quan Guo
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the luminosity functions (LFs) and projected number density profiles of galactic satellites around isolated primaries of different luminosities. We measure these quantities for model satellites placed into the Millennium and Millennium II dark matter simulations by the GALFORM semi-analytic galaxy formation model for different bins of primary galaxy magnitude and we investigate their dependence on satellite luminosity. We compare our model predictions to the data of Guo et al. from the Sloan Digital Sky Survey Data Release 8 (SDSS DR8). First, we use a mock light-cone catalogue to verify that the method we used to count satellites in the SDSS DR8 is unbiased. We find that the radial distributions of model satellites are similar to those around comparable primary galaxies in the SDSS DR8, with only slight differences at low luminosities and small projected radii. However, when splitting the satellites by colour, the model and SDSS satellite systems no longer resemble one another, with many red model satellites, in contrast to the dominant blue fraction at similar luminosity in SDSS. The few model blue satellites are also significantly less centrally concentrated in the halo of their stacked primary than their SDSS counterparts. The implications of this result for the GALFORM model are discussed.

rate research

Read More

Faint undetected sources of radio-frequency interference (RFI) might become visible in long radio observations when they are consistently present over time. Thereby, they might obstruct the detection of the weak astronomical signals of interest. This issue is especially important for Epoch of Reionisation (EoR) projects that try to detect the faint redshifted HI signals from the time of the earliest structures in the Universe. We explore the RFI situation at 30-163 MHz by studying brightness histograms of visibility data observed with LOFAR, similar to radio-source-count analyses that are used in cosmology. An empirical RFI distribution model is derived that allows the simulation of RFI in radio observations. The brightness histograms show an RFI distribution that follows a power-law distribution with an estimated exponent around -1.5. With several assumptions, this can be explained with a uniform distribution of terrestrial radio sources whose radiation follows existing propagation models. Extrapolation of the power law implies that the current LOFAR EoR observations should be severely RFI limited if the strength of RFI sources remains strong after time integration. This is in contrast with actual observations, which almost reach the thermal noise and are thought not to be limited by RFI. Therefore, we conclude that it is unlikely that there are undetected RFI sources that will become visible in long observations. Consequently, there is no indication that RFI will prevent an EoR detection with LOFAR.
We present an updated and revised analysis of the relationship between the Hbeta broad-line region (BLR) radius and the luminosity of the active galactic nucleus (AGN). Specifically, we have carried out two-dimensional surface brightness decompositions of the host galaxies of 9 new AGNs imaged with the Hubble Space Telescope Wide Field Camera 3. The surface brightness decompositions allow us to create AGN-free images of the galaxies, from which we measure the starlight contribution to the optical luminosity measured through the ground-based spectroscopic aperture. We also incorporate 20 new reverberation-mapping measurements of the Hbeta time lag, which is assumed to yield the average Hbeta BLR radius. The final sample includes 41 AGNs covering four orders of magnitude in luminosity. The additions and updates incorporated here primarily affect the low-luminosity end of the R-L relationship. The best fit to the relationship using a Bayesian analysis finds a slope of alpha = 0.533 (+0.035/-0.033), consistent with previous work and with simple photoionization arguments. Only two AGNs appear to be outliers from the relationship, but both of them have monitoring light curves that raise doubt regarding the accuracy of their reported time lags. The scatter around the relationship is found to be 0.19(+/-0.02) dex, but would be decreased to 0.13 dex by the removal of these two suspect measurements. A large fraction of the remaining scatter in the relationship is likely due to the inaccurate distances to the AGN host galaxies. Our results help support the possibility that the R-L relationship could potentially be used to turn the BLRs of AGNs into standardizable candles. This would allow the cosmological expansion of the Universe to be probed by a separate population of objects, and over a larger range of redshifts.
Luminous Red Galaxies (LRG) from the Sloan Digital Sky Survey are considered among the best understood samples of galaxies, and they are employed in a broad range of cosmological studies. Because they form a relatively homogeneous population, with high stellar masses and red colors, they are expected to occupy halos in a relatively simple way. In this paper, we study how LRGs occupy massive halos via direct counts in clusters and we reveal several unexpected trends suggesting that the connection between LRGs and dark matter halos may not be straightforward. Using the redMaPPer cluster catalog, we derive the central occupation of LRGs as a function richness, Ncen({lambda}). Assuming no correlation between cluster mass and central galaxy luminosity at fixed richness, we show that clusters contain a significantly lower fraction of central LRGs than predicted from the two-point correlation function. At halo masses of 10^14.5 Msun, we find Ncen=0.73, compared to Ncen of 0.89 from correlation studies. Our central occupation function for LRGs converges to 0.95 at large halo masses. A strong anti-correlation between central luminosity and cluster mass at fixed richness is required to reconcile our results with those based on clustering studies. We also derive P_BNC, the probability that the brightest cluster member is not the central galaxy. We find P_BNC ~ 20-30% which is a factor of ~2 lower than the value found by Skibba et al. 2011. Finally, we study the radial offsets of bright non-central LRGs from cluster centers and show that bright non-central LRGs follow a different radial distribution compared to red cluster members, which follow a Navarro-Frank-White profile. This work demonstrates that even the most massive clusters do not always have an LRG at the center, and that the brightest galaxy in a cluster is not always the central galaxy.
We study the spatial distribution of faint satellites of intermediate redshift (0.1<z<0.8), early-type galaxies, selected from the GOODS fields. We combine high resolution HST images and state-of-the-art host subtraction techniques to detect satellites of unprecedented faintness and proximity to intermediate redshift host galaxies (up to 5.5 magnitudes fainter and as close as 0.5/2.5 kpc to the host centers). We model the spatial distribution of objects near the hosts as a combination of an isotropic, homogenous background/foreground population and a satellite population with a power law radial profile and an elliptical angular distribution. We detect a significant population of satellites, Ns =1.7 (+0.9,-0.8) that is comparable to the number of Milky Way satellites with similar host-satellite contrast.The average projected radial profile of the satellite distribution is isothermal, gamma_p= -1.0(+0.3,-0.4), which is consistent with the observed central mass density profile of massive early-type galaxies. Furthermore, the satellite distribution is highly anisotropic (isotropy is ruled out at a >99.99% confidence level). Defining phi to be the offset between the major axis of the satellite spatial distribution and the major axis of the host light profile, we find a maximum posterior probability of phi = 0 and |phi| less than 42 degrees at the 68% confidence level. The alignment of the satellite distribution with the light of the host is consistent with simulations, assuming that light traces mass for the host galaxy as observed for lens galaxies. The anisotropy of the satellite population enhances its ability to produce the flux ratio anomalies observed in gravitationally lensed quasars.
We present high-resolution mid-infrared (MIR) imaging, nuclear spectral energy distributions (SEDs) and archival Spitzer spectra for 22 low-luminosity active galactic nuclei (LLAGN; Lbol lesssim 10^42 erg/sec). Infrared (IR) observations may advance our understanding of the accretion flows in LLAGN, the fate of the obscuring torus at low accretion rates, and, perhaps, the star formation histories of these objects. However, while comprehensively studied in higher-luminosity Seyferts and quasars, the nuclear IR properties of LLAGN have not yet been well-determined. We separate the present LLAGN sample into three categories depending on their Eddington ratio and radio emission, finding different IR characteristics for each class. (I) At the low-luminosity, low-Eddington ratio (log Lbol/LEdd < -4.6) end of the sample, we identify host-dominated galaxies with strong polycyclic aromatic hydrocarbon bands that may indicate active (circum-)nuclear star formation. (II) Some very radio-loud objects are also present at these low Eddington ratios. The IR emission in these nuclei is dominated by synchrotron radiation, and some are likely to be unobscured type 2 AGN that genuinely lack a broad line region. (III) At higher Eddington ratios, strong, compact nuclear sources are visible in the MIR images. The nuclear SEDs of these galaxies are diverse; some resemble typical Seyfert nuclei, while others lack a well-defined MIR dust bump. Strong silicate emission is present in many of these objects. We speculate that this, together with high ratios of silicate strength to hydrogen column density, could suggest optically thin dust and low dust-to-gas ratios, in accordance with model predictions that LLAGN do not host a Seyfert-like obscuring torus.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا