Do you want to publish a course? Click here

Chasing Unbiased Spectra of the Universe

181   0   0.0 ( 0 )
 Added by Yong-Seon Song
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The cosmological power spectrum of the coherent matter flow is measured exploiting an improved prescription for the apparent anisotropic clustering pattern in redshift space. New statistical analysis is presented to provide an optimal observational platform to link the improved redshift distortion theoretical model to future real datasets. The statistical power as well as robustness of our method are tested against 60 realizations of 8 Gpc/h^3 dark matter simulation maps mocking the precision level of upcoming wide--deep surveys. We showed that we can accurately extract the velocity power spectrum up to quasi linear scales of k~0.1 h/Mpc at z = 0.35 and up to k~0.15 h/Mpc at higher redshifts within a couple of percentage precision level. Our understanding of redshift space distortion is proved to be appropriate for precision cosmology, and our statistical method will guide us to righteous path to meet the real world.



rate research

Read More

We present the clustering measurement of hard X-ray selected AGN in the local Universe. We used a sample of 199 sources spectroscopically confirmed detected by Swift-BAT in its 15-55 keV all-sky survey. We measured the real space projected auto-correlation function and detected a signal significant on projected scales lower than 200 Mpc/h. We measured a correlation length of r0=5.56+0.49-0.43 Mpc/h and a slope {gamma}=1.64-0.08 -0.07. We also measured the auto-correlation function of Type I and Type II AGN and found higher correlation length for Type I AGN. We have a marginal evidence of luminosity dependent clustering of AGN, as we detected a larger correlation length of luminous AGN than that of low luminosity sources. The corresponding typical host DM halo masses of Swift-BAT are log(MDMH) 12-14 h^-1 M/M_sun, depending on the subsample. For the whole sample we measured log(MDMH)sim 13.15 h-1 M/M_sun which is the typical mass of a galaxy group. We estimated that the local AGN population has a typical lifetime tau_AGN sim 0.7 Gyr, it is powered by SMBH with mass MBH sim 1-10x10^8 M_odot and accreting with very low efficiency, log(epsilon)-2.0. We also conclude that local AGN host galaxies are typically red-massive galaxies with stellar mass of the order 2-80x10^10 h^-1 M_sun. We compared our results with clustering predictions of merger-driven AGN triggering models and found a good agreement.
We present the Deeper Wider Faster (DWF) program that coordinates more than 30 multi-wavelength and multi-messenger facilities worldwide and in space to detect and study fast transients (millisecond-to-hours duration). DWF has four main components, (1) simultaneous observations, where about 10 major facilities, from radio to gamma-ray, are coordinated to perform deep, wide-field, fast-cadenced observations of the same field at the same time. Radio telescopes search for fast radio bursts while optical imagers and high-energy instruments search for seconds-to-hours timescale transient events, (2) real-time (seconds to minutes) supercomputer data processing and candidate identification, along with real-time (minutes) human inspection of candidates using sophisticated visualisation technology, (3) rapid-response (minutes) follow-up spectroscopy and imaging and conventional ToO observations, and (4) long-term follow up with a global network of 1-4m-class telescopes. The principal goals of DWF are to discover and study counterparts to fast radio bursts and gravitational wave events, along with millisecond-to-hour duration transients at all wavelengths.
In this study, we are going to discuss the accelerated expansion of the universe and how this accelerated expansion affects the paths of photons from cosmic microwave background radiation (CMB). Then we will see how wide-field galaxy surveys along with cosmic CMB anisotropy maps can help us in studying dark energy. The cross-correlation of galaxy over/under-density maps with CMB anisotropy maps help us in measuring one of the most useful signatures of dark energy i.e. Integrated Sachs-Wolfe (ISW) effect. ISW effect explains the blue-shifting and red-shifting of CMB photons when they reach to us after passing through large scale structures and super-voids respectively. We will look into the theoretical foundations behind ISW effect and discuss how modern all sky galaxy surveys like EMU-ASKAP will be useful in studying the effect.
Weak gravitational lensing analyses are fundamentally limited by the intrinsic, non-Gaussian distribution of galaxy shapes. We explore alternative statistics for samples of ellipticity measurements that are unbiased, efficient, and robust. We take the non-linear mapping of gravitational shear and the effect of noise into account. We then discuss how the distribution of individual galaxy shapes in the observed field of view can be modeled by fitting Fourier modes to the shear pattern directly. We simulated samples of galaxy ellipticities, using both theoretical distributions and real data for ellipticities and noise. We determined the possible bias $Delta e$, the efficiency $eta$ and the robustness of the least absolute deviations, the biweight, and the convex hull peeling estimators, compared to the canonical weighted mean. Using these statistics for regression, we have shown the applicability of direct Fourier mode fitting. These estimators can be unbiased in the absence of noise, and decrease noise bias by more than $sim 30%$. The convex hull peeling estimator distribution is centered around the underlying shear, and its bias least affected by noise. The least absolute deviations estimator to be the most efficient estimator in almost all cases, except in the Gaussian case, where its still competitive ($0.83<eta <5.1$) and therefore robust. These results hold when fitting Fourier modes, where amplitudes of variation in ellipticity are determined to the order of $10^{-3}$. The peak of the ellipticity distribution is a direct tracer of the underlying shear and unaffected by noise, and we have shown that estimators that are sensitive to a central cusp perform more efficiently, potentially reducing uncertainties by more than $50%$ and significantly decreasing noise bias.
The recent detection of the primordial gravitational waves from the BICEP2 observation seems to be in tension with the upper bound on the amplitude of tensor perturbations from the PLANCK data. We consider a phenomenological model of inflation in which the microscopical properties of the inflationary fluid such as the equation of state $w$ or the sound speed $c_s$ jump in a sharp manner. We show that the amplitude of the scalar perturbations is controlled by a non-trivial combination of $w$ and $c_s$ before and after the phase transition while the tensor perturbations remains nearly intact. With an appropriate choice of the fluid parameters $w$ and $c_s$ one can suppress the scalar perturbation power spectrum on large scales to accommodate a large tensor amplitude with $r=0.2$ as observed by BICEP2 observation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا