Do you want to publish a course? Click here

Reinterpretation of Sieczka-Ho{l}yst financial market model

160   0   0.0 ( 0 )
 Added by Tomasz Gubiec
 Publication date 2013
  fields Financial Physics
and research's language is English




Ask ChatGPT about the research

In this work we essentially reinterpreted the Sieczka-Ho{l}yst (SH) model to make it more suited for description of real markets. For instance, this reinterpretation made it possible to consider agents as crafty. These agents encourage their neighbors to buy some stocks if agents have an opportunity to sell these stocks. Also, agents encourage them to sell some stocks if agents have an opposite opportunity. Furthermore, in our interpretation price changes respond only to the agents opinions change. This kind of respond protects the stock market dynamics against the paradox (present in the SH model), where all agents e.g. buy stocks while the corresponding prices remain unchanged. In this work we found circumstances, where distributions of returns (obtained for quite different time scales) either obey power-law or have at least fat tails. We obtained these distributions from numerical simulations performed in the frame of our approach.



rate research

Read More

We investigate financial market correlations using random matrix theory and principal component analysis. We use random matrix theory to demonstrate that correlation matrices of asset price changes contain structure that is incompatible with uncorrelated random price changes. We then identify the principal components of these correlation matrices and demonstrate that a small number of components accounts for a large proportion of the variability of the markets that we consider. We then characterize the time-evolving relationships between the different assets by investigating the correlations between the asset price time series and principal components. Using this approach, we uncover notable changes that occurred in financial markets and identify the assets that were significantly affected by these changes. We show in particular that there was an increase in the strength of the relationships between several different markets following the 2007--2008 credit and liquidity crisis.
The model describing market dynamics after a large financial crash is considered in terms of the stochastic differential equation of Ito. Physically, the model presents an overdamped Brownian particle moving in the nonstationary one-dimensional potential $U$ under the influence of the variable noise intensity, depending on the particle position $x$. Based on the empirical data the approximate estimation of the Kramers-Moyal coefficients $D_{1,2}$ allow to predicate quite definitely the behavior of the potential introduced by $D_1 = - partial U /partial x$ and the volatility $sim sqrt{D_2}$. It has been shown that the presented model describes well enough the best known empirical facts relative to the large financial crash of October 1987.
We investigated the network structures of the Japanese stock market through the minimum spanning tree. We defined grouping coefficient to test the validity of conventional grouping by industrial categories, and found a decreasing in trend for the coefficient. This phenomenon supports the increasing external influences on the market due to the globalization. To reduce this influence, we used S&P500 index as the international market and removed its correlation with every stock. We found stronger grouping in this measurement, compared to the original analysis, which agrees with our assumption that the international market influences to the Japanese market.
189 - X.F. Jiang , B. Zheng , J. Shen 2010
We investigate the large-volatility dynamics in financial markets, based on the minute-to-minute and daily data of the Chinese Indices and German DAX. The dynamic relaxation both before and after large volatilities is characterized by a power law, and the exponents $p_pm$ usually vary with the strength of the large volatilities. The large-volatility dynamics is time-reversal symmetric at the time scale in minutes, while asymmetric at the daily time scale. Careful analysis reveals that the time-reversal asymmetry is mainly induced by exogenous events. It is also the exogenous events which drive the financial dynamics to a non-stationary state. Different characteristics of the Chinese and German stock markets are uncovered.
The investor is interested in the expected return and he is also concerned about the risk and the uncertainty assumed by the investment. One of the most popular concepts used to measure the risk and the uncertainty is the variance and/or the standard-deviation. In this paper we explore the following issues: Is the standard-deviation a good measure of risk and uncertainty? What are the potentialities of the entropy in this context? Can entropy present some advantages as a measure of uncertainty and simultaneously verify some basic assumptions of the portfolio management theory, namely the effect of diversification?
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا