Sticky Surfaces: Sphere-Sphere Adhesion Dynamics


Abstract in English

We present a multi-scale model to study the attachment of spherical particles with a rigid core, coated with binding ligands and in equilibrium with the surrounding, quiescent fluid medium. This class of fluid-immersed adhesion is widespread in many natural and engineering settings. Our theory highlights how the micro-scale binding kinetics of these ligands, as well as the attractive / repulsive surface potential in an ionic medium effects the eventual macro-scale size distribution of the particle aggregates (flocs). The results suggest that the presence of elastic ligands on the particle surface allow large floc aggregates by inducing efficient inter-floc collisions (i.e., a large, non-zero collision factor). Strong electrolytic composition of the surrounding fluid favors large floc formation as well.

Download