Do you want to publish a course? Click here

Neutron Scattering Study on Spin Dynamics in Superconducting (Tl,Rb)2Fe4Se5

119   0   0.0 ( 0 )
 Added by Wei Bao
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We observed in superconducting (Tl,Rb)2Fe4Se5 spin-wave branches that span an energy range from 6.5 to 209 meV. Spin dynamics are successfully described by a Heisenberg localized spin model whose dominant in-plane interactions include only the nearest (J1 and J1) and next nearest neighbor (J2 and J2) exchange terms within and between the tetramer spin blocks, respectively. These experimentally determined exchange constants would crucially constrain the theoretical viewpoints on magnetism and superconductivity in the Fe-based materials.



rate research

Read More

213 - Feng Ye , Wei Bao , Songxue Chi 2014
The magnetic and iron vacancy orders in superconducting (Tl,Rb)2Fe4Se5 single-crystals are investigated by using a high-pressure neutron diffraction technique. Similar to the temperature effect, the block antiferromagnetic order gradually decreases upon increasing pressure while the Fe vacancy superstructural order remains intact before its precipitous disappearance at the critical pressure Pc = 8.3 GPa. Combined with previously determined Pc for superconductivity, our phase diagram under pressure reveals the concurrence of the block AFM order, the iron vacancy order and superconductivity for the 245 superconductor. A synthesis of current experimental data in a coherent physical picture is attempted.
We present neutron scattering data on two single crystals of the high temperature superconductor La2-x(Ca,Sr)xCaCu2O6+delta. The Ca0.1-doped crystal exhibits a long-range antiferromagnetically ordered ground state. In contrast, the Sr0.15-doped crystal exhibits short-range antiferromagnetic order as well as weak superconductivity. In both crystals antiferromagnetic correlations are commensurate; however, some results on the Ca0.1-doped crystal resemble those on the spin-glass phase of La2-xSrxCuO4, where magnetic correlations became incommensurate. In addition, both crystals show a structural transition from tetragonal to orthorhombic symmetry. Quite remarkably, the temperature dependence and correlation length of the magnetic order is very similar to that of the orthorhombic distortion. We attribute this behavior to an orthorhombic strain-induced inter-bilayer magnetic coupling, which triggers the antiferromagnetic order. The large size of the crystals made it also possible to study the magnetic diffuse scattering along rods perpendicular to the CuO2 planes in more detail. For comparison we show X-ray diffraction and magnetization data. In particular, for the Ca0.1-doped crystal these measurements reveal valuable information on the spin-glass transition as well as a second anomaly associated with the Neel transition.
Neutrons have played an important role in advancing our understanding of the pairing mechanism and the symmetry of the superconducting energy gap in the iron arsenide compounds. Neutron measurements of the phonon density-of-state are in good agreement with ab initio calculations, provided the magnetism of the iron atoms is taken into account. However, the predicted superconducting transition temperatures are less than 1 K, making a conventional phononic mechanism for superconductivity highly unlikely. Measurements of the spin dynamics within the spin density wave phase of the parent compounds show evidence of strongly dispersive spin waves with exchange interactions consistent with the observed magnetic order. Antiferromagnetic fluctuations persist in the normal phase of the superconducting compounds, but they are more diffuse. Below Tc, there is evidence compounds that these fluctuations condense into a resonant spin excitation at the antiferromagnetic wavevector with an energy that scales with Tc, consistent with unconventional superconductivity of extended-s+/- wave symmetry.
Recent observations [A.~Pustogow et al. Nature 574, 72 (2019)] of a drop of the $^{17}$O nuclear magnetic resonance (NMR) Knight shift in the superconducting state of Sr$_2$RuO$_4$ challenged the popular picture of a chiral odd-parity paired state in this compound. Here we use polarized neutron scattering to show that there is a $34 pm 6$ % drop in the magnetic susceptibility at the ruthenium site below the superconducting transition temperature. Measurements are made at lower fields $H sim tfrac{1}{3} H_{c2}$ than a previous study allowing the suppression to be observed. Our results are consistent with the recent NMR observations and rule out the chiral odd-parity $mathbf{d}=hat{mathbf{z}}(k_xpm ik_y)$ state. The observed susceptibility is consistent with several recent proposals including even-parity $B_{1g}$ and odd-parity helical states.
269 - Z.-H. Liu , P. Richard , N. Xu 2012
We report a comprehensive angle-resolved photoemission spectroscopy study of the tridimensional electronic bands in the recently discovered Fe selenide superconductor (Tl,Rb)$_y$Fe$_{2-x}$Se$_2$ ($T_c=32$ K). We determined the orbital characters and the $k_z$ dependence of the low energy electronic structure by tuning the polarization and the energy of the incident photons. We observed a small 3D electron Fermi surface pocket near the Brillouin zone center and a 2D like electron Fermi surface pocket near the zone boundary. The photon energy dependence, the polarization analysis and the local-density approximation calculations suggest a significant contribution from the Se 4$p_z$ and Fe 3$d_{xy}$ orbitals to the small electron pocket. We argue that the emergence of Se 4$p_z$ states might be the cause of the different magnetic properties between Fe chalcogenides and Fe pnictides.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا