Do you want to publish a course? Click here

Role of Electronic Structure in the Morphotropic Phase Boundary of TbxDy1-xCo2 Studied by First-principles Calculation

107   0   0.0 ( 0 )
 Added by Dongyan Zhang
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Physically parallel to ferroelectric morphotropic phase boundary, a phase boundary separating two ferromagnetic phase of different crystallographic symmetries was found in TbxDy1-xCo2. High-resolution synchrotron XRD has been carried out to offer experimental evidence for TbxDy1-xCo2. It has been proved that TbxDy1-xCo2 (0.6<x<0.7) is a morphotropic phase boundary and that the crystal structures of tetragonal (x<0.6) and rhombohedral (x>0.7) phase is distorted from a Laves Phase. Here, a first principles calculation provides a theoretical explanation on the origin of MBP in TbxDy1-xCo2 and is also provided for the question of why MPB occurs in TbxDy1-xCo2 alloys.



rate research

Read More

Morphotropic phase boundaries (MPBs) show substantial piezoelectric and dielectric responses, which have practical applications. The predicted existence of MPB in HfO2-ZrO2 solid solution thin film has provided a new way to increase the dielectric properties of a silicon-compatible device. Here, we present a new fabrication design by which the density of MPB and consequently the dielectric constant of HfO2-ZrO2 thin film was considerably increased. The density of MPB was controlled by fabrication of a 10-nm [1 nm-Hf0.5Zr0.5O2 (Ferroelectric)/1 nm-ZrO2 (Antiferroelectric)] nanolaminate followed by an appropriate annealing process. The coexistence of orthorhombic and tetragonal structures, which are the origins of ferroelectric (FE) and antiferroelectric (AFE) behaviors, respectively, was structurally confirmed, and a double hysteresis loop that originates from AFE ordering, with some remnant polarization that originates from FE ordering, was observed in P-E curve. A remarkable increase in dielectric constant compared to the conventional HfO2-ZrO2 thin film was achieved by controlling the FE-AFE ratio. The fabrication process was performed at low temperature and the device is compatible with silicon technology, so the new design yields a device that has possible applications in near-future electronics.
The properties of newly discovered polar ScFeO3 with magnetic ordering are examined using Ab initio calculations and symmetry mode analysis. The GGA+U calculation confirms the stability of polar R3c Phase in ScFeO3 and the pressure induced phase transition to non-polar Pnma phase. Octahedron tilting and structural properties as a function of applied pressure have been analyzed. The origin of polar phase is associated with instability of non-polar R-3c phase and group theory using the symmetry mode analysis has been applied to understand this instability as well as the spontaneous polarization of polar R3c phase. The magnetic phase transition shows G-type AFM ordering of Fe3+ ion within Goodenough-Kanamori theory and the possibility of magnetic spin structure has been analyzed by using energy analysis including spin canting possibility.
We investigate relative stability, structural properties and electronic structure of various modulated martensites of the magnetic shape memory alloy Mn$_{2}$NiGa by means of density functional theory. We observe that the instability in the high-temperature cubic structure first drives the system to a structure where modulation shuffles with a period of six atomic planes are taken into account. The driving mechanism for this instability is found to be the nesting of the minority band Fermi surface, in a similar way as established for the prototype system Ni$_{2}$MnGa. In agreement with experiments, we find 14M modulated structures with orthorhombic and monoclinic symmetries having energies lower than other modulated phases with same symmetry. In addition, we also find energetically favourable 10M modulated structures which have not been observed experimentally for this system yet. The relative stability of various martensites is explained in terms of changes in the electronic structures near the Fermi level, affected mostly by the hybridisation of Ni and Mn states. Our results indicate that the maximum achievable magnetic field-induced strain in Mn$_{2}$NiGa would be larger than in Ni$_{2}$MnGa. However, the energy costs for creating nanoscale adaptive twin boundaries are found to be one order of magnitude higher than that in Ni$_{2}$MnGa.
Temperature dependent structural changes in a nearly pure monoclinic phase composition (x=0.525) of Pb(Zr_xTi_1-x)O_3 (PZT) have been investigated using Rietveld analysis of high-resolution synchrotron powder x-ray diffraction data and correlated with changes in the dielectric constant and planar electromechanical coupling coefficient. Our results show that the intrinsic piezoelectric response of the tetragonal phase of PZT is higher than that of the monoclinic phase. It is also shown that the high piezoelectric response of PZT may be linked with an anomalous softening of the elastic modulus (1/S_11) of the tetragonal compositions closest to the morphotropic phase boundary.
Two-dimensional polarity is intriguing but remains in the early stage. Here a structural evolution diagram is established for GeS monolayer, which leads a noncollinear ferrielectric $delta$-phase energetically as stable as the ferroelectric $alpha$-phase. Its ferrielectricity is induced by the phonon frustration, i.e., the competition between ferroelectric and antiferroelectric modes, providing more routes to tune its polarity. Besides its prominent properties like large band gap, large polarization, and high Curie temperature, more interestingly, the morphotropic phase boundary between $alpha$- and $delta$-phases is highly possible, which is crucial to obtain giant piezoelectricity for lead-free applications.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا