Do you want to publish a course? Click here

Planning by Prioritized Sweeping with Small Backups

114   0   0.0 ( 0 )
 Added by Harm van Seijen
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

Efficient planning plays a crucial role in model-based reinforcement learning. Traditionally, the main planning operation is a full backup based on the current estimates of the successor states. Consequently, its computation time is proportional to the number of successor states. In this paper, we introduce a new planning backup that uses only the current value of a single successor state and has a computation time independent of the number of successor states. This new backup, which we call a small backup, opens the door to a new class of model-based reinforcement learning methods that exhibit much finer control over their planning process than traditional methods. We empirically demonstrate that this increased flexibility allows for more efficient planning by showing that an implementation of prioritized sweeping based on small backups achieves a substantial performance improvement over classical implementations.



rate research

Read More

Monte Carlo Tree Search (MCTS) has improved the performance of game engines in domains such as Go, Hex, and general game playing. MCTS has been shown to outperform classic alpha-beta search in games where good heuristic evaluations are difficult to obtain. In recent years, combining ideas from traditional minimax search in MCTS has been shown to be advantageous in some domains, such as Lines of Action, Amazons, and Breakthrough. In this paper, we propose a new way to use heuristic evaluations to guide the MCTS search by storing the two sources of information, estimated win rates and heuristic evaluations, separately. Rather than using the heuristic evaluations to replace the playouts, our technique backs them up implicitly during the MCTS simulations. These minimax values are then used to guide future simulations. We show that using implicit minimax backups leads to stronger play performance in Kalah, Breakthrough, and Lines of Action.
130 - Xujie Si , Yujia Li , Vinod Nair 2019
We propose prioritized unit propagation with periodic resetting, which is a simple but surprisingly effective algorithm for solving random SAT instances that are meant to be hard. In particular, an evaluation on the Random Track of the 2017 and 2018 SAT competitions shows that a basic prototype of this simple idea already ranks at second place in both years. We share this observation in the hope that it helps the SAT community better understand the hardness of random instances used in competitions and inspire other interesting ideas on SAT solving.
Online solvers for partially observable Markov decision processes have difficulty scaling to problems with large action spaces. This paper proposes a method called PA-POMCPOW to sample a subset of the action space that provides varying mixtures of exploitation and exploration for inclusion in a search tree. The proposed method first evaluates the action space according to a score function that is a linear combination of expected reward and expected information gain. The actions with the highest score are then added to the search tree during tree expansion. Experiments show that PA-POMCPOW is able to outperform existing state-of-the-art solvers on problems with large discrete action spaces.
The prioritized Experience Replay (ER) method has attracted great attention; however, there is little theoretical understanding about why it can help and its limitations. In this work, we take a deep look at the prioritized ER. In a supervised learning setting, we show the equivalence between the error-based prioritized sampling method for mean squared error and uniform sampling for cubic power loss. We then provide theoretical insight into why it improves convergence rate upon uniform sampling during early learning. Based on the insight, we further point out two limitations of the prioritized ER method: 1) outdated priorities and 2) insufficient coverage of the sample space. To mitigate the limitations, we propose our model-based stochastic gradient Langevin dynamics sampling method. We show that our method does provide states distributed close to an ideal prioritized sampling distribution estimated by the brute-force method, which does not suffer from the two limitations. We conduct experiments on both discrete and continuous control problems to show our approachs efficacy and examine the practical implication of our method in an autonomous driving application.
This paper presents a solution to Autonomous Underwater Vehicles (AUVs) large scale route planning and task assignment joint problem. Given a set of constraints (e.g., time) and a set of task priority values, the goal is to find the optimal route for underwater mission that maximizes the sum of the priorities and minimizes the total risk percentage while meeting the given constraints. Making use of the heuristic nature of genetic and swarm intelligence algorithms in solving NP-hard graph problems, Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) are employed to find the optimum solution, where each individual in the population is a candidate solution (route). To evaluate the robustness of the proposed methods, the performance of the all PS and GA algorithms are examined and compared for a number of Monte Carlo runs. Simulation results suggest that the routes generated by both algorithms are feasible and reliable enough, and applicable for underwater motion planning. However, the GA-based route planner produces superior results comparing to the results obtained from the PSO based route planner.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا