Microscopic theory of non-adiabatic response in real and imaginary time


Abstract in English

We present a general approach to describe slowly driven quantum systems both in real and imaginary time. We highlight many similarities, qualitative and quantitative, between real and imaginary time evolution. We discuss how the metric tensor and the Berry curvature can be extracted from both real and imaginary time simulations as a response of physical observables. For quenches ending at or near the quantum critical point, we show the utility of the scaling theory for detecting the location of the quantum critical point by comparing sweeps at different velocities. We briefly discuss the universal relaxation to equilibrium of systems after a quench. We finally review recent developments of quantum Monte Carlo methods for studying imaginary-time evolution. We illustrate our findings with explicit calculations using the transverse field Ising model in one dimension.

Download