Do you want to publish a course? Click here

Stark deceleration of NO radicals

124   0   0.0 ( 0 )
 Added by Xingan Wang
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the Stark deceleration of a pulsed molecular beam of NO radicals. Stark deceleration of this chemically important species has long been considered unfeasible due to its small electric dipole moment of 0.16 D. We prepared the NO radicals in the X 2{Pi}3/2, v=0, J=3/2 spin-orbit excited state from the X 2{Pi}1/2, v=0, J=1/2 ground state by Franck-Condon pumping via the A 2{Sigma}+ state. The larger effective dipole moment in the J=3/2 level of the X 2{Pi}3/2, v=0 state, in combination with a 316-stages-long Stark decelerator, allowed us to decelerate NO radicals from 315.0 m/s to 229.2 m/s, thus removing 47 % of their kinetic energy. The measured time-of-flight profiles of the NO radicals exiting the decelerator show good agreement with the outcome of numerical trajectory simulations.



rate research

Read More

The Stark deceleration of OH radicals in both low-field-seeking and high-field-seeking levels of the rovibronic ${}^2Pi_{3/2},v=0,J=3/2$ ground state is demonstrated using a single experimental setup. Applying alternating-gradient focusing, OH radicals in their low-field-seeking ${}^2Pi_{3/2},v=0,J=3/2,f$ state have been decelerated from 345 m/s to 239 m/s, removing 50 % of the kinetic energy using only 27 deceleration stages. The alternating-gradient decelerator allows to independently control longitudinal and transverse manipulation of the molecules. Optimized high-voltage switching sequences for the alternating-gradient deceleration are applied, in order to adjust the dynamic focusing strength in every deceleration stage to the changing velocity over the deceleration process. In addition we have also decelerated OH radicals in their high-field-seeking ${}^2Pi_{3/2},v=0,J=3/2,e$ state from 355 m/s to 316 m/s. For the states involved, a real crossing of hyperfine levels occurs at 640 V/cm, which is examined by varying a bias voltage applied to the electrodes.
Whereas atom-molecule collisions have been studied with complete quantum state resolution, interactions between two state-selected molecules have proven much harder to probe. Here, we report the measurement of state-resolved inelastic scattering cross sections for collisions between two open-shell molecules that are both prepared in a single quantum state. Stark-decelerated OH radicals were scattered with hexapole-focused NO radicals in a crossed beam configuration. Rotationally and spin-orbit inelastic scattering cross sections were measured on an absolute scale for collision energies between 70 and 300 cm$^{-1}$. These cross sections show fair agreement with quantum coupled-channels calculations using a set of coupled model potential energy surfaces based on ab initio calculations for the long-range non-adiabatic interactions and a simplistic short-range interaction. This comparison reveals the crucial role of electrostatic forces in complex molecular collision processes.
Stark deceleration has been utilized for slowing and trapping several species of neutral, ground-state polar molecules generated in a supersonic beam expansion. Due to the finite physical dimension of the electrode array and practical limitations of the applicable electric fields, only molecules within a specific range of velocities and positions can be efficiently slowed and trapped. These constraints result in a restricted phase space acceptance of the decelerator in directions both transverse and parallel to the molecular beam axis; hence, careful modeling is required for understanding and achieving efficient Stark decelerator operation. We present work on slowing of the hydroxyl radical (OH) elucidating the physics controlling the evolution of the molecular phase space packets both with experimental results and model calculations. From these results we deduce experimental conditions necessary for efficient operation of a Stark decelerator.
174 - O. Bucicov , M. Nowak , S. Jung 2007
We produce SO_2 molecules with a centre of mass velocity near zero using a Stark decelerator. Since the initial kinetic energy of the supersonic SO_2 molecular beam is high, and the removed kinetic energy per stage is small, 326 deceleration stages are necessary to bring SO_2 to a complete standstill, significantly more than in other experiments. We show that in such a decelerator possible loss due to coupling between the motional degrees of freedom must be considered. Experimental results are compared with 3D Monte-Carlo simulations and the quantum state selectivity of the Stark decelerator is demonstrated.
We report on the production of a pulsed molecular beam of metastable NH ($a ^1Delta$) radicals and present first results on the Stark deceleration of the NH ($a ^1Delta, J=2, MOmega=-4$) radicals from 550 m/s to 330 m/s. The decelerated molecules are excited on the spin-forbidden $A ^3Pi leftarrow a ^1Delta$ transition, and detected via their subsequent spontaneous fluorescence to the $X ^3Sigma^{-}, v=0$ ground-state. These experiments demonstrate the feasibility of our recently proposed scheme [Phys. Rev. A 64 (2001) 041401] to accumulate ground-state NH radicals in a magnetic trap.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا