We consider fault-tolerant quantum computation in the context where there are no fresh ancilla qubits available during the computation, and where the noise is due to a general quantum channel. We show that there are three classes of noisy channels: In the first, typified by the depolarizing channel, computation is only possible for a logarithmic time. In the second class, of which the dephasing channel is an example, computation is possible for polynomial time. The amplitude damping channel is an example of the third class, and for this class of channels, it is possible to compute for an exponential time in the number of qubits available.