Do you want to publish a course? Click here

Addendum to: QRPA uncertainties and their correlations in the analysis of neutrinoless double beta decay

117   0   0.0 ( 0 )
 Added by Eligio Lisi
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

In a previous article [Phys. Rev. D 79, 053001 (2009)] we estimated the correlated uncertainties associated to the nuclear matrix elements (NME) of neutrinoless double beta decay (0 nu beta beta) within the quasiparticle random phase approximation (QRPA). Such estimates encompass recent independent calculations of NMEs, and can thus still provide a fair representation of the nuclear model uncertainties. In this context, we compare the claim of 0 nu beta beta decay in Ge-76 with recent negative results in Xe-136 and in other nuclei, and we infer the lifetime ranges allowed or excluded at 90% C.L. We also highlight some issues that should be addressed in order to properly compare and combine results coming from different 0 nu beta beta decay candidate nuclei.



rate research

Read More

190 - Amand Faessler 2009
The variances and covariances associated to the nuclear matrix elements (NME) of neutrinoless double beta decay are estimated within the quasiparticle random phase approximation (QRPA). It is shown that correlated NME uncertainties play an important role in the comparison of neutrinoless double beta decay rates for different nuclei, and that they are degenerate with the uncertainty in the reconstructed Majorana neutrino mass.
164 - E. Lisi 2015
Theoretical estimates for the half life of neutrinoless double beta decay in candidate nuclei are affected by both particle and nuclear physics uncertainties, which may complicate the interpretation of decay signals or limits. We study such uncertainties and their degeneracies in the following context: three nuclei of great interest for large-scale experiments (76-Ge, 130-Te, 136-Xe), two representative particle physics mechanisms (light and heavy Majorana neutrino exchange), and a large set of nuclear matrix elements (NME), computed within the quasiparticle random phase approximation (QRPA). It turns out that the main theoretical uncertainties, associated with the effective axial coupling g_A and with the nucleon-nucleon potential, can be parametrized in terms of NME rescaling factors, up to small residuals. From this parametrization, the following QRPA features emerge: (1) the NME dependence on g_A is milder than quadratic; (2) in each of the two mechanisms, the relevant lepton number violating parameter is largely degenerate with the NME rescaling factors; and (3) the light and heavy neutrino exchange mechanisms are basically degenerate in the above three nuclei. We comment on the challenging theoretical and experimental improvements required to reduce such particle and nuclear physics uncertainties and their degeneracies.
We discuss a mechanism of neutrinoless double beta decay, where neutrinos of different flavours come into play. This is realized by effective flavour-violating scalar interactions. As one consequence, we find that within the normal mass ordering the neutrino effective mass may no longer vanish due to contributions from other flavours. We evaluate the necessary nuclear matrix elements, consider the interference between the standard diagram and the new scalar one, and analyze a UV-complete model that realizes the scalar interaction. Tests of the complete model are possible at colliders and future neutrino experiments. Our scenario represents an alternative mechanism for neutrinoless double beta decay, where nevertheless lepton number violation resides only in Majorana mass terms of light neutrinos.
NEXT-100 is an electroluminescent high-pressure xenon gas time projection chamber that will search for the neutrinoless double beta ($beta beta 0 u$) decay of Xe-136. The detector possesses two features of great value for $beta beta 0 u$ searches: energy resolution better than 1% FWHM at the $Q$ value of Xe-136 and track reconstruction for the discrimination of signal and background events. This combination results in excellent sensitivity, as discussed in this paper. Material-screening measurements and a detailed Monte Carlo detector simulation predict a background rate for NEXT-100 of at most $4times10^{-4}$ counts keV$^{-1}$ kg$^{-1}$ yr$^{-1}$. Accordingly, the detector will reach a sensitivity to the bbonu-decay half-life of $2.8times10^{25}$ years (90% CL) for an exposure of 100 $mathrm{kg}cdotmathrm{year}$, or $6.0times10^{25}$ years after a run of 3 effective years.
We quantify the extent to which future experiments will test the existence of neutrinoless double-beta decay mediated by light neutrinos with inverted-ordered masses. While it remains difficult to compare measurements performed with different isotopes, we find that future searches will fully test the inverted ordering scenario, as a global, multi-isotope endeavor. They will also test other possible mechanisms driving the decay, including a large uncharted region of the allowed parameter space assuming that neutrino masses follow the normal ordering.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا