Do you want to publish a course? Click here

Pairs of Fan-type heavy subgraphs for pancyclicity of 2-connected graphs

119   0   0.0 ( 0 )
 Added by Bo Ning
 Publication date 2013
  fields
and research's language is English
 Authors Bo Ning




Ask ChatGPT about the research

A graph $G$ on $n$ vertices is Hamiltonian if it contains a spanning cycle, and pancyclic if it contains cycles of all lengths from 3 to $n$. In 1984, Fan presented a degree condition involving every pair of vertices at distance two for a 2-connected graph to be Hamiltonian. Motivated by Fans result, we say that an induced subgraph $H$ of $G$ is $f_1$-heavy if for every pair of vertices $u,vin V(H)$, $d_{H}(u,v)=2$ implies $max{d(u),d(v)}geq (n+1)/2$. For a given graph $R$, $G$ is called $R$-$f_1$-heavy if every induced subgraph of $G$ isomorphic to $R$ is $f_1$-heavy. In this paper we show that for a connected graph $S$ with $S eq P_3$ and a 2-connected claw-$f_1$-heavy graph $G$ which is not a cycle, $G$ being $S$-$f_1$-heavy implies $G$ is pancyclic if $S=P_4,Z_1$ or $Z_2$, where claw is $K_{1,3}$ and $Z_i$ is the path $a_1a_2a_3... a_{i+2}a_{i+3}$ plus the edge $a_1a_3$. Our result partially improves a previous theorem due to Bedrossian on pancyclicity of 2-connected graphs.



rate research

Read More

We call a graph $G$ pancyclic if it contains at least one cycle of every possible length $m$, for $3le mle |V(G)|$. In this paper, we define a new property called chorded pancyclicity. We explore forbidden subgraphs in claw-free graphs sufficient to imply that the graph contains at least one chorded cycle of every possible length $4, 5, ldots, |V(G)|$. In particular, certain paths and triangles with pendant paths are forbidden.
The well-known Disjoint Paths problem is to decide if a graph contains k pairwise disjoint paths, each connecting a different terminal pair from a set of k distinct pairs. We determine, with an exception of two cases, the complexity of the Disjoint Paths problem for $H$-free graphs. If $k$ is fixed, we obtain the $k$-Disjoint Paths problem, which is known to be polynomial-time solvable on the class of all graphs for every $k geq 1$. The latter does no longer hold if we need to connect vertices from terminal sets instead of terminal pairs. We completely classify the complexity of $k$-Disjoint Connected Subgraphs for $H$-free graphs, and give the same almost-complete classification for Disjoint Connected Subgraphs for $H$-free graphs as for Disjoint Paths.
In 2009, Bang-Jensen asked whether there exists a function $g(k)$ such that every strongly $k$-connected $n$-vertex tournament contains a strongly $k$-connected spanning subgraph with at most $kn + g(k)$ arcs. In this paper, we answer the question by showing that every strongly $k$-connected $n$-vertex tournament contains a strongly $k$-connected spanning subgraph with at most $kn + 750k^2log(k+1)$ arcs.
297 - Xihe Li , Ligong Wang 2018
Let $n, k, m$ be positive integers with $ngg mgg k$, and let $mathcal{A}$ be the set of graphs $G$ of order at least 3 such that there is a $k$-connected monochromatic subgraph of order at least $n-f(G,k,m)$ in any rainbow $G$-free coloring of $K_n$ using all the $m$ colors. In this paper, we prove that the set $mathcal{A}$ consists of precisely $P_6$, $P_3cup P_4$, $K_2cup P_5$, $K_2cup 2P_3$, $2K_2cup K_3$, $2K_2cup P^{+}_4$, $3K_2cup K_{1,3}$ and their subgraphs of order at least 3. Moreover, we show that for any graph $Hin mathcal{A}$, if $n$ sufficiently larger than $m$ and $k$, then any rainbow $(P_3cup H)$-free coloring of $K_n$ using all the $m$ colors contains a $k$-connected monochromatic subgraph of order at least $cn$, where $c=c(H)$ is a constant, not depending on $n$, $m$ or $k$. Furthermore, we consider a parallel problem in complete bipartite graphs. Let $s, t, k, m$ be positive integers with ${rm min}left{s, tright}gg mgg k$ and $mgeq |E(H)|$, and let $mathcal{B}$ be the set of bipartite graphs $H$ of order at least 3 such that there is a $k$-connected monochromatic subgraph of order at least $s+t-f(H,k,m)$ in any rainbow $H$-free coloring of $K_{s,t}$ using all the $m$ colors, where $f(H,k,m)$ is not depending on $s$ or $t$. We prove that the set $mathcal{B}$ consists of precisely $2P_3$, $2K_2cup K_{1,3}$ and their subgraphs of order at least 3. Finally, we consider the large $k$-connected multicolored subgraph instead of monochromatic subgraph. We show that for $1leq k leq 3$ and $n$ sufficiently large, every Gallai-3-coloring of $K_n$ contains a $k$-connected subgraph of order at least $n-leftlfloorfrac{k-1}{2}rightrfloor$ using at most two colors. We also show that the above statement is false for $k=4t$, where $t$ is an positive integer.
It is an intriguing question to see what kind of information on the structure of an oriented graph $D$ one can obtain if $D$ does not contain a fixed oriented graph $H$ as a subgraph. The related question in the unoriented case has been an active area of research, and is relatively well-understood in the theory of quasi-random graphs and extremal combinatorics. In this paper, we consider the simplest cases of such a general question for oriented graphs, and provide some results on the global behavior of the orientation of $D$. For the case that $H$ is an oriented four-cycle we prove: in every $H$-free oriented graph $D$, there is a pair $A,Bssq V(D)$ such that $e(A,B)ge e(D)^{2}/32|D|^{2}$ and $e(B,A)le e(A,B)/2$. We give a random construction which shows that this bound on $e(A,B)$ is best possible (up to the constant). In addition, we prove a similar result for the case $H$ is an oriented six-cycle, and a more precise result in the case $D$ is dense and $H$ is arbitrary. We also consider the related extremal question in which no condition is put on the oriented graph $D$, and provide an answer that is best possible up to a multiplicative constant. Finally, we raise a number of related questions and conjectures.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا