Do you want to publish a course? Click here

Asteroid Belts in Debris Disk Twins: VEGA and FOMALHAUT

138   0   0.0 ( 0 )
 Added by Kate Y. L. Su
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Vega and Fomalhaut, are similar in terms of mass, ages, and global debris disk properties; therefore, they are often referred as debris disk twins. We present Spitzer 10-35 um spectroscopic data centered at both stars, and identify warm, unresolved excess emission in the close vicinity of Vega for the first time. The properties of the warm excess in Vega are further characterized with ancillary photometry in the mid infrared and resolved images in the far-infrared and submillimeter wavelengths. The Vega warm excess shares many similar properties with the one found around Fomalhaut. The emission shortward of ~30 um from both warm components is well described as a blackbody emission of ~170 K. Interestingly, two other systems, eps Eri and HR 8799, also show such an unresolved warm dust using the same approach. These warm components may be analogous to the solar systems zodiacal dust cloud, but of far greater. The dust temperature and tentative detections in the submillimeter suggest the warm excess arises from dust associated with a planetesimal ring located near the water-frost line and presumably created by processes occurring at similar locations in other debris systems as well. We also review the properties of the 2 um hot excess around Vega and Fomalhaut, showing that the dust responsible for the hot excess is not spatially associated with the dust we detected in the warm belt. We suggest it may arise from hot nano grains trapped in the magnetic field of the star. Finally, the separation between the warm and cold belt is rather large with an orbital ratio >~10 in all four systems. In light of the current upper limits on the masses of planetary objects and the large gap, we discuss the possible implications for their underlying planetary architecture, and suggest that multiple, low-mass planets likely reside between the two belts in Vega and Fomalhaut.



rate research

Read More

We present ALMA mosaic observations at 1.3 mm (223 GHz) of the Fomalhaut system with a sensitivity of 14 $mu$Jy/beam. These observations provide the first millimeter map of the continuum dust emission from the complete outer debris disk with uniform sensitivity, enabling the first conclusive detection of apocenter glow. We adopt a MCMC modeling approach that accounts for the eccentric orbital parameters of a collection of particles within the disk. The outer belt is radially confined with an inner edge of $136.3pm0.9$ AU and width of $13.5pm1.8$ AU. We determine a best-fit eccentricity of $0.12pm0.01$. Assuming a size distribution power law index of $q=3.46pm 0.09$, we constrain the dust absorptivity power law index $beta$ to be $0.9<beta<1.5$. The geometry of the disk is robustly constrained with inclination $65.!!^circ6pm0.!!^circ3$, position angle $337.!!^circ9pm0.!!^circ3$, and argument of periastron $22.!!^circ5pm4.!!^circ3$. Our observations do not confirm any of the azimuthal features found in previous imaging studies of the disk with HST, SCUBA, and ALMA. However, we cannot rule out structures $leq10$ AU in size or which only affect smaller grains. The central star is clearly detected with a flux density of $0.75pm0.02$ mJy, significantly lower than predicted by current photospheric models. We discuss the implications of these observations for the directly imaged Fomalhaut b and the inner dust belt detected at infrared wavelengths.
Planetary systems hold the imprint of the formation and of the evolution of planets especially at young ages, and in particular at the stage when the gas has dissipated leaving mostly secondary dust grains. The dynamical perturbation of planets in the dust distribution can be revealed with high-contrast imaging in a variety of structures. SPHERE, the high-contrast imaging device installed at the VLT, was designed to search for young giant planets in long period, but is also able to resolve fine details of planetary systems at the scale of astronomical units in the scattered-light regime. As a young and nearby star, NZ Lup was observed in the course of the SPHERE survey. A debris disk had been formerly identified with HST/NICMOS. We observed this system in the near-infrared with the camera in narrow and broad band filters and with the integral field spectrograph. High contrasts are achieved by the mean of pupil tracking combined with angular differential imaging algorithms. The high angular resolution provided by SPHERE allows us to reveal a new feature in the disk which is interpreted as a superimposition of two belts of planetesimals located at stellocentric distances of $sim$85 and $sim$115,au, and with a mutual inclination of about 5$degb$. Despite the very high inclination of the disk with respect to the line of sight, we conclude that the presence of a gap, that is, a void in the dust distribution between the belts, is likely. We discuss the implication of the existence of two belts and their relative inclination with respect to the presence of planets.
54 - J. D. Adams 2018
We present the first spatially resolved mid-infrared (37.1 $mu$m) image of the Fomalhaut debris disk. We use PSF fitting and subtraction to distinctly measure the flux from the unresolved component and the debris disk. We measure an infrared excess in the point source of $0.9 pm 0.2$ Jy, consistent with emission from warm dust in an inner disk structure (Su et al. 2016), and inconsistent with a stellar wind origin. We cannot confirm or rule out the presence of a pileup ring (Su et al. 2016) near the star. In the cold region, the 37 $mu$m imaging is sensitive to emission from small, blowout grains, which is an excellent probe of the dust production rate from planetesimal collisions. Under the assumptions that the dust grains are icy aggregates and the debris disk is in steady state, this result is consistent with the dust production rates predicted by Kenyon & Bromley (2008) from theoretical models of icy planet formation. We find a dust luminosity of $(7.9 pm 0.8) times 10^{-4}$ L$_odot$ and a dust mass of 8 -- 16 lunar masses, depending on grain porosity, with $sim 1$ lunar mass in grains with radius 1 $mu$m -- 1 mm. If the grains are icy and highly porous, meter-sized objects must be invoked to explain the far-IR, submm, and mm emission. If the grains are composed of astronomical silicates, there is a dearth of blowout grains (Pawellek et al. 2014) and the mass loss rate is well below the predicted dust production values.
[Abridged] Debris disks are extrasolar analogs to the solar system planetesimal belts. The star Fomalhaut harbors a cold debris belt at 140 AU as well as evidence of a warm dust component, which is suspected of being a bright analog to the solar systems zodiacal dust. Interferometric observations obtained with the VLTI and the KIN have identified near- and mid-infrared excesses attributed to hot and warm exozodiacal dust in the inner few AU of the star. We performed parametric modeling of the exozodiacal disk using the GRaTeR radiative transfer code to reproduce the interferometric data, complemented by mid- to far-infrared measurements. A detailed treatment of sublimation temperatures was introduced to explore the hot population at the sublimation rim. We then used an analytical approach to successively testing several source mechanisms. A good fit to the data is found by two distinct dust populations: (1) very small, hence unbound, hot dust grains confined in a narrow region at the sublimation rim of carbonaceous material; (2) bound grains at 2 AU that are protected from sublimation and have a higher mass despite their fainter flux level. We propose that the hot dust is produced by the release of small carbon grains following the disruption of aggregates that originate from the warm component. A mechanism, such as gas braking, is required to further confine the small grains for a long enough time. In situ dust production could hardly be ensured for the age of the star, so the observed amount of dust must be triggered by intense dynamical activity. Fomalhaut may be representative of exozodis that are currently being surveyed worldwide. We propose a framework for reconciling the hot exozodi phenomenon with theoretical constraints: the hot component of Fomalhaut is likely the tip of the iceberg since it could originate from a warm counterpart residing near the ice line.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا