Do you want to publish a course? Click here

Gravitating cosmic strings with flat directions

150   0   0.0 ( 0 )
 Added by Jon Urrestilla
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study field theoretical models for cosmic strings with flat directions in curved space-time. More precisely, we consider minimal models with semilocal, axionic and tachyonic strings, respectively. In flat space-time, the string solutions of these models have a flat direction, i.e., a uniparametric family of configurations with the same energy exists which is associated to a zero mode. We prove that the zero mode survives coupling to gravity, and study the role of the flat direction when coupling the strings to gravity. Even though the total energy of the solution is the same, and thus the global properties of the family of solutions remains unchanged, the energy density, and therefore the gravitational properties, are different. The local structure of the solutions depends strongly on the value of the parameter describing the flat direction; for example, for supermassive strings, the value of the free parameter can determine the size of the universe.



rate research

Read More

We extend the effective field theory (EFT) formalism for gravitational radiation from a binary system of compact objects to the case of extended objects. In particular, we study the EFT for a binary system consisting of two infinitely-long cosmic strings with small velocity and small spatial substructure, or wiggles. The complexity of the system requires the introduction of two perturbative expansion parameters, constructed from the velocity and size of the wiggles, in contrast with the point particle case, for which a single parameter is sufficient. This further requires us to assign new power counting rules in the system. We integrate out the modes corresponding to potential gravitons, yielding an effective action for the radiation gravitons. We show that this action describes a changing quadrupole, sourced by the bending modes of the string, which in turn generates gravitational waves. We study the ultraviolet divergences in this description, and use them to obtain the classical renormalization group flow of the string tension in such a setting.
We first examine the microstructure of a cosmic string endowed with two simple Abelian currents. This microstructure depends on two state parameters. We then provide the macroscopic description of such a string and show that it depends on an additional Lorentz-invariant state parameter that relates the two currents. We find that in most of the parameter space, the two-current string is essentially equivalent to the single current-carrying string, i.e., only one field condenses onto the defect. In the regions where two currents are present, we find that as far as stability is concerned, one can approximate the dynamics with good accuracy using an analytic model based on either a logarithmic (on the electric side, i.e., for timelike currents) or a rational (on the magnetic side, i.e., for spacelike currents) worldsheet Lagrangian.
Global cosmic strings are generically predicted in particle physics beyond the Standard Model, e.g., a post-inflationary global $U(1)$ symmetry breaking which may associate with axion-like dark matter. We demonstrate that although subdominant to Goldstone emission, gravitational waves (GWs) radiated from global strings can be observable with current or future GW detectors. The frequency spectrum of such GWs is also shown to be a powerful tool to probe the Hubble expansion rate of the Universe at times prior to the Big Bang nucleosynthesis where the standard cosmology has yet to be tested.
A metastable cosmic-string network is a generic consequence of many grand unified theories (GUTs) when combined with cosmic inflation. Metastable cosmic strings are not topologically stable, but decay on cosmic time scales due to pair production of GUT monopoles. This leads to a network consisting of metastable long strings on superhorizon scales as well as of string loops and segments on subhorizon scales. We compute for the first time the complete stochastic gravitational-wave background (SGWB) arising from all these network constituents, including several technical improvements to both the derivation of the loop and segment contributions. We find that the gravitational waves emitted by string loops provide the main contribution to the gravitational-wave spectrum in the relevant parameter space. The resulting spectrum is consistent with the tentative signal observed by the NANOGrav and Parkes pulsar timing collaborations for a string tension of Gmu ~ 10^-11...-7 and has ample discovery space for ground- and space-based detectors. For GUT-scale string tensions, Gmu ~ 10^-8...-7, metastable strings predict a SGWB in the LIGO-Virgo-KAGRA band that could be discovered in the near future.
Cosmic strings are predicted by many field-theory models, and may have been formed at a symmetry-breaking transition early in the history of the universe, such as that associated with grand unification. They could have important cosmological effects. Scenarios suggested by fundamental string theory or M-theory, in particular the popular idea of brane inflation, also strongly suggest the appearance of similar structures. Here we review the reasons for postulating the existence of cosmic strings or superstrings, the various possible ways in which they might be detected observationally, and the special features that might discriminate between ordinary cosmic strings and superstrings.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا