Do you want to publish a course? Click here

Variable Accretion Outbursts in Protostellar Evolution

110   0   0.0 ( 0 )
 Added by Jaehan Bae Mr.
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We extend the one-dimensional, two-zone models of long-term protostellar disk evolution with infall of Zhu et al. to consider the potential effects of a finite viscosity in regions where the ionization is too low for the magnetorotational instability (MRI) to operate (the dead zone). We find that the presence of a small but finite dead zone viscosity, as suggested by simulations of stratified disks with MRI-active outer layers, can trigger inside-out bursts of accretion, starting at or near the inner edge of the disk, instead of the previously-found outside-in bursts with zero dead zone viscosity, which originate at a few AU in radius. These inside-out bursts of accretion bear a qualitative resemblance to the outburst behavior of one FU Ori object, V1515 Cyg, in contrast to the outside-in burst models which more closely resemble the accretion events in FU Ori and V1057 Cyg. Our results suggest that the type and frequency of outbursts are potentially a probe of transport efficiency in the dead zone. Simulations must treat the inner disk regions, $R lesssim 0.5$ AU, to show the detailed time evolution of accretion outbursts in general and to observe the inside-out bursts in particular.



rate research

Read More

We present the latest development of the disk gravitational instability and fragmentation model, originally introduced by us to explain episodic accretion bursts in the early stages of star formation. Using our numerical hydrodynamics model with improved disk thermal balance and star-disk interaction, we computed the evolution of protostellar disks formed from the gravitational collapse of prestellar cores. In agreement with our previous studies, we find that cores of higher initial mass and angular momentum produce disks that are more favorable to gravitational instability and fragmentation, while a higher background irradiation and magnetic fields moderate the disk tendency to fragment. The protostellar accretion in our models is time-variable, thanks to the nonlinear interaction between different spiral modes in the gravitationally unstable disk, and can undergo episodic bursts when fragments migrate onto the star owing to the gravitational interaction with other fragments or spiral arms. Most bursts occur in the partly embedded Class I phase, with a smaller fraction taking place in the deeply embedded Class 0 phase and a few possible bursts in the optically visible Class II phase. The average burst duration and mean luminosity are found to be in good agreement with those inferred from observations of FU-Orionis-type eruptions. The model predicts the existence of two types of bursts: the isolated ones, showing well-defined luminosity peaks separated with prolonged periods (~ 10^4 yr) of quiescent accretion, and clustered ones, demonstrating several bursts occurring one after another during just a few hundred years. Finally, we estimate that 40%--70% of the star-forming cores can display bursts after forming a star-disk system.
91 - D. M.-A. Meyer 2017
Using the HPC ressources of the state of Baden-Wurttemberg, we modelled for the first time the luminous burst from a young massive star by accretion of material from its close environment. We found that the surroundings of young massive stars are shaped as a clumpy disk whose fragments provoke outbursts once they fall onto the protostar and concluded that similar strong luminous events observed in high-mass star forming regions may be a signature of the presence of such disks.
378 - E. I. Vorobyov 2020
The early evolution of protostellar disks with metallicities in the $Z=1.0-0.01~Z_odot$ range was studied with a particular emphasis on the strength of gravitational instability and the nature of protostellar accretion in low-metallicity systems. Numerical hydrodynamics simulations in the thin-disk limit were employed that feature separate gas and dust temperatures, and disk mass-loading from the infalling parental cloud cores. Models with cloud cores of similar initial mass and rotation pattern, but distinct metallicity were considered to distinguish the effect of metallicity from that of initial conditions. The early stages of disk evolution in low-metallicity models are characterized by vigorous gravitational instability and fragmentation. Disk instability is sustained by continual mass-loading from the collapsing core. The time period that is covered by this unstable stage is much shorter in the $Z=0.01~Z_odot$ models as compared to their higher metallicity counterparts thanks to the higher mass infall rates caused by higher gas temperatures (that decouple from lower dust temperatures) in the inner parts of collapsing cores. Protostellar accretion rates are highly variable in the low-metallicity models reflecting a highly dynamical nature of the corresponding protostellar disks. The low-metallicity systems feature short, but energetic episodes of mass accretion caused by infall of inward-migrating gaseous clumps that form via gravitational fragmentation of protostellar disks. These bursts seem to be more numerous and last longer in the $Z=0.1~Z_odot$ models in comparison to the $Z=0.01~Z_odot$ case. Variable protostellar accretion with episodic bursts is not a particular feature of solar metallicity disks. It is also inherent to gravitationally unstable disks with metallicities up to 100 times lower than solar.
144 - Zhaohuan Zhu , Lee Hartmann , 2010
We use one-dimensional two-zone time-dependent accretion disk models to study the long-term evolution of protostellar disks subject to mass addition from the collapse of a rotating cloud core. Our model consists of a constant surface density magnetically coupled active layer, with transport and dissipation in inactive regions only via gravitational instability. We start our simulations after a central protostar has formed, containing ~ 10% of the mass of the protostellar cloud. Subsequent evolution depends on the angular momentum of the accreting envelope. We find that disk accretion matches the infall rate early in the disk evolution because much of the inner disk is hot enough to couple to the magnetic field. Later infall reaches the disk beyond ~10 AU, and the disk undergoes outbursts of accretion in FU Ori-like events as described in Zhu et al. 2009c. If the initial cloud core is moderately rotating most of the central stars mass is built up by these outburst events. Our results suggest that the protostellar luminosity problem is eased by accretion during these FU Ori-like outbursts. After infall stops the disk enters the T Tauri phase. An outer, viscously evolving disk has structure that is in reasonable agreement with recent submillimeter studies and its surface density evolves from $Sigma propto R^{-1}$ to $R^{-1.5}$. An inner, massive belt of material-- the dead zone -- would not have been observed yet but should be seen in future high angular resolution observations by EVLA and ALMA. This high surface density belt is a generic consequence of low angular momentum transport efficiency at radii where the disk is magnetically decoupled, and would strongly affect planet formation and migration.
107 - Eduard Vorobyov 2018
We aim at studying the causal link between the knotty jet structure in CARMA 7, a young Class 0 protostar in the Serpens South cluster, and episodic accretion in young protostellar disks. We used numerical hydrodynamics simulations to derive the protostellar accretion history in gravitationally unstable disks around solar-mass protostars. We compared the time spacing between luminosity bursts Deltatau_mod, caused by dense clumps spiralling on the protostar, with the differences of dynamical timescales between the knots Deltatau_obs in CARMA 7. We found that the time spacing between the bursts have a bi-modal distribution caused by isolated and clustered luminosity bursts. The former are characterized by long quiescent periods between the bursts with Deltatau_mod = a few * (10^3-10^4) yr, whereas the latter occur in small groups with time spacing between the bursts Deltatau_mod= a few * (10-10^2) yr. For the clustered bursts, the distribution of Deltatau_mod in our models can be fit reasonably well to the distribution of Deltatau_obs in the protostellar jet of CARMA 7, if a certain correction for the (yet unknown) inclination angle with respect to the line of sight is applied. The K-S test on the model and observational data sets suggests the best-fit values for the inclination angles of 55-80 deg., which become narrower (75-80 deg.) if only strong luminosity bursts are considered. The dynamical timescales of the knots in the jet of CARMA 7 are too short for a meaningful comparison with the long time spacings between isolated bursts in our models. The exact sequences of time spacings between the luminosity bursts in our models and knots in the jet of CARMA 7 were found difficult to match. (abridged)
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا