Do you want to publish a course? Click here

Ultra-stable implanted 83Rb/83mKr electron sources for the energy scale monitoring in the KATRIN experiment

171   0   0.0 ( 0 )
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The KATRIN experiment aims at the direct model-independent determination of the average electron neutrino mass via the measurement of the endpoint region of the tritium beta decay spectrum. The electron spectrometer of the MAC-E filter type is used, requiring very high stability of the electric filtering potential. This work proves the feasibility of implanted 83Rb/83mKr calibration electron sources which will be utilised in the additional monitor spectrometer sharing the high voltage with the main spectrometer of KATRIN. The source employs conversion electrons of 83mKr which is continuously generated by 83Rb. The K-32 conversion line (kinetic energy of 17.8 keV, natural line width of 2.7 eV) is shown to fulfill the KATRIN requirement of the relative energy stability of +/-1.6 ppm/month. The sources will serve as a standard tool for continuous monitoring of KATRINs energy scale stability with sub-ppm precision. They may also be used in other applications where the precise conversion lines can be separated from the low energy spectrum caused by the electron inelastic scattering in the substrate.



rate research

Read More

211 - M. Beck , K. Bokeloh , H. Hein 2014
The KATRIN experiment is going to search for the average mass of the electron antineutrino with a sensitivity of 0.2 eV/c2. It uses a retardation spectrometer of MAC-E filter type to accurately measure the shape of the electron spectrum at the endpoint of tritium beta decay. In order to achieve the planned sensitivity the transmission properties of the spectrometer have to be understood with high precision for all initial conditions. For this purpose an electron source has been developed that emits single electrons at adjustable total energy and adjustable emission angle. The emission is pointlike and can be moved across the full flux tube that is imaged onto the detector. Here, we demonstrate that this novel type of electron source can be used to investigate the transmission properties of a MAC-E filter in detail.
The KATRIN experiment is designed for a direct and model-independent determination of the effective electron anti-neutrino mass via a high-precision measurement of the tritium $beta$-decay endpoint region with a sensitivity on $m_ u$ of 0.2$,$eV/c$^2$ (90% CL). For this purpose, the $beta$-electrons from a high-luminosity windowless gaseous tritium source traversing an electrostatic retarding spectrometer are counted to obtain an integral spectrum around the endpoint energy of 18.6$,$keV. A dominant systematic effect of the response of the experimental setup is the energy loss of $beta$-electrons from elastic and inelastic scattering off tritium molecules within the source. We determined the linebreak energy-loss function in-situ with a pulsed angular-selective and monoenergetic photoelectron source at various tritium-source densities. The data was recorded in integral and differential modes; the latter was achieved by using a novel time-of-flight technique. We developed a semi-empirical parametrization for the energy-loss function for the scattering of 18.6-keV electrons from hydrogen isotopologs. This model was fit to measurement data with a 95% T$_2$ gas mixture at 30$,$K, as used in the first KATRIN neutrino mass analyses, as well as a D$_2$ gas mixture of 96% purity used in KATRIN commissioning runs. The achieved precision on the energy-loss function has abated the corresponding uncertainty of $sigma(m_ u^2)<10^{-2},mathrm{eV}^2$ [arXiv:2101.05253] in the KATRIN neutrino-mass measurement to a subdominant level.
98 - D. Venos , J. Kaspar , M. Zboril 2009
The mono-energetic conversion electrons from the decay of 83mKr represent a unique tool for the energy calibration, energy scale monitoring and systematic studies of the tritium beta spectrum measurement in the neutrino mass experiment KATRIN. For this reason, the long term stability of energy of the 7.5 keV and 17.8 keV conversion electrons populated in the decay of solid 83Rb/83mKr vacuum evaporated sources was examined by means of two electron spectrometers.
The KATRIN experiment aims to determine the neutrino mass scale with a sensitivity of 200 meV/c^2 (90% C.L.) by a precision measurement of the shape of the tritium $beta$-spectrum in the endpoint region. The energy analysis of the decay electrons is achieved by a MAC-E filter spectrometer. To determine the transmission properties of the KATRIN main spectrometer, a mono-energetic and angular-selective electron source has been developed. In preparation for the second commissioning phase of the main spectrometer, a measurement phase was carried out at the KATRIN monitor spectrometer where the device was operated in a MAC-E filter setup for testing. The results of these measurements are compared with simulations using the particle-tracking software Kassiopeia, which was developed in the KATRIN collaboration over recent years.
The focal-plane detector system for the KArlsruhe TRItium Neutrino (KATRIN) experiment consists of a multi-pixel silicon p-i-n-diode array, custom readout electronics, two superconducting solenoid magnets, an ultra high-vacuum system, a high-vacuum system, calibration and monitoring devices, a scintillating veto, and a custom data-acquisition system. It is designed to detect the low-energy electrons selected by the KATRIN main spectrometer. We describe the system and summarize its performance after its final installation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا