We investigate the ground state properties and tunneling dynamics of ultracold dipolar bosons in a one dimensional triple well trap from a few-body ab-initio perspective. Our focus is primarily on the distinctive features of dipolar bosons compared to the contact interacting bosons. Formation of intra-well localization is observed for very strong dipolar interaction. General population rearangement as well as fragmentation and localization effects have been found, depending strongly on the particle number. The energy spectrum for two particles exhibits avoided crossings that lead to several distinct resonances involving different bands, i.e. to an inter-band resonant tunneling dynamics. The corresponding mechanisms are investigated by studying among others the pair-probability and performing an eigenstate analysis.