Do you want to publish a course? Click here

When epsilon-expansion of hypergeometric functions is expressible in terms of multiple polylogarithms: the two-variables examples

104   0   0.0 ( 0 )
 Added by Mikhail Kalmykov
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this talk, we discuss the algorithm for the construction of analytical coefficients of higher order epsilon expansion of some Horn type hypergeometric functions of two variables around rational values of parameters.



rate research

Read More

449 - M. Yu. Kalmykov 2008
We review the hypergeometric function approach to Feynman diagrams. Special consideration is given to the construction of the Laurent expansion. As an illustration, we describe a collection of physically important one-loop vertex diagrams for which this approach is useful.
376 - M. Yu. Kalmykov 2007
We continue the study of the construction of analytical coefficients of the epsilon-expansion of hypergeometric functions and their connection with Feynman diagrams. In this paper, we show the following results: Theorem A: The multiple (inverse) binomial sums of arbitrary weight and depth (see Eq. (1.1)) are expressible in terms of Remiddi-Vermaseren functions. Theorem B: The epsilon expansion of a hypergeometric function with one half-integer value of parameter (see Eq. (1.2)) is expressible in terms of the harmonic polylogarithms of Remiddi and Vermaseren with coefficients that are ratios of polynomials. Some extra materials are available via the www at this http://theor.jinr.ru/~kalmykov/hypergeom/hyper.html
136 - V. Bytev , B. Kniehl 2013
HYPERDIRE is a project devoted to the creation of a set of Mathematica-based programs for the differential reduction of hypergeometric functions. The current version allows for manipulations involving the full set of Horn-type hypergeometric functions of two variables, including 30 functions.
We prove the following theorems: 1) The Laurent expansions in epsilon of the Gauss hypergeometric functions 2F1(I_1+a*epsilon, I_2+b*epsilon; I_3+p/q + c epsilon; z), 2F1(I_1+p/q+a*epsilon, I_2+p/q+b*epsilon; I_3+ p/q+c*epsilon;z), 2F1(I_1+p/q+a*epsilon, I_2+b*epsilon; I_3+p/q+c*epsilon;z), where I_1,I_2,I_3,p,q are arbitrary integers, a,b,c are arbitrary numbers and epsilon is an infinitesimal parameter, are expressible in terms of multiple polylogarithms of q-roots of unity with coefficients that are ratios of polynomials; 2) The Laurent expansion of the Gauss hypergeometric function 2F1(I_1+p/q+a*epsilon, I_2+b*epsilon; I_3+c*epsilon;z) is expressible in terms of multiple polylogarithms of q-roots of unity times powers of logarithm with coefficients that are ratios of polynomials; 3) The multiple inverse rational sums (see Eq. (2)) and the multiple rational sums (see Eq. (3)) are expressible in terms of multiple polylogarithms; 4) The generalized hypergeometric functions (see Eq. (4)) are expressible in terms of multiple polylogarithms with coefficients that are ratios of polynomials.
We briefly sketch a proof concerning the structure of the all-order epsilon-expansions of generalized hypergeometric functions with special sets of parameters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا