Do you want to publish a course? Click here

Prethermalization Revealed by the Relaxation Dynamics of Full Distribution Functions

132   0   0.0 ( 0 )
 Added by Tim Langen
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We detail the experimental observation of the non-equilibrium many-body phenomenon prethermalization. We study the dynamics of a rapidly and coherently split one-dimensional Bose gas. An analysis based on the use of full quantum mechanical probability distributions of matter wave interference contrast reveals that the system evolves towards a quasi-steady state. This state, which can be characterized by an effective temperature, is not the final thermal equilibrium state. We compare the evolution of the system to an integrable Tomonaga-Luttinger liquid model and show that the system dephases to a prethermalized state rather than undergoing thermalization towards a final thermal equilibrium state.



rate research

Read More

Stochastic systems feature, in general, both coherent dynamics and incoherent transitions between different states. We propose a method to identify the coherent part in the full counting statistics for the transitions. The proposal is illustrated for electron transfer through a quantum-dot spin valve, which combines quantum-coherent spin precession with electron tunneling. We show that by counting the number of transferred electrons as a function of time, it is possible to distill out the coherent dynamics from the counting statistics even in transport regimes, in which other tools such as the frequency-dependent current noise and the waiting-time distribution fail.
Periodic driving has emerged as a powerful tool in the quest to engineer new and exotic quantum phases. While driven many-body systems are generically expected to absorb energy indefinitely and reach an infinite-temperature state, the rate of heating can be exponentially suppressed when the drive frequency is large compared to the local energy scales of the system -- leading to long-lived prethermal regimes. In this work, we experimentally study a bosonic cloud of ultracold atoms in a driven optical lattice and identify such a prethermal regime in the Bose-Hubbard model. By measuring the energy absorption of the cloud as the driving frequency is increased, we observe an exponential-in-frequency reduction of the heating rate persisting over more than 2 orders of magnitude. The tunability of the lattice potentials allows us to explore one- and two-dimensional systems in a range of different interacting regimes. Alongside the exponential decrease, the dependence of the heating rate on the frequency displays features characteristic of the phase diagram of the Bose-Hubbard model, whose understanding is additionally supported by numerical simulations in one dimension. Our results show experimental evidence of the phenomenon of Floquet prethermalization, and provide insight into the characterization of heating for driven bosonic systems.
We experimentally study the relaxation dynamics of a coherently split one-dimensional Bose gas using matterwave interference. Measuring the full probability distributions of interference contrast reveals the prethermalization of the system to a non-thermal steady state. To describe the evolution of noise and correlations we develop a semiclassical effective description that allows us to model the dynamics as a stochastic Ornstein-Uhlenbeck process.
Universal phenomena far from equilibrium exhibit additional independent scaling exponents and functions as compared to thermal universal behavior. For the example of an ultracold Bose gas we simulate nonequilibrium transport processes in a universal scaling regime and show how they lead to the breaking of the fluctuation-dissipation relation. As a consequence, the scaling of spectral functions (commutators) and statistical correlations (anticommutators) between different points in time and space become linearly independent with distinct dynamic scaling exponents. As a macroscopic signature of this phenomenon we identify a transport peak in the statistical two-point correlator, which is absent in the spectral function showing the quasiparticle peaks of the Bose gas.
We theoretically investigate the effects of atom losses in the one-dimensional (1D) Bose gas with repulsive contact interactions, a famous quantum integrable system also known as the Lieb-Liniger gas. The generic case of K-body losses (K = 1,2,3,...) is considered. We assume that the loss rate is much smaller than the rate of intrinsic relaxation of the system, so that at any time the state of the system is captured by its rapidity distribution (or, equivalently, by a Generalized Gibbs Ensemble). We give the equation governing the time evolution of the rapidity distribution and we propose a general numerical procedure to solve it. In the asymptotic regimes of vanishing repulsion -- where the gas behaves like an ideal Bose gas -- and hard-core repulsion -- where the gas is mapped to a non-interacting Fermi gas -- we derive analytic formulas. In the latter case, our analytic result shows that losses affect the rapidity distribution in a non-trivial way, the time derivative of the rapidity distribution being both non-linear and non-local in rapidity space.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا