Do you want to publish a course? Click here

On the Origin of Mass Segregation in NGC 3603

117   0   0.0 ( 0 )
 Added by Xiaoying Pang
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present deep Hubble Space Telescope/Wide Field and Planetary Camera 2 photometry of the young HD 97950 star cluster in the giant H {sc ii} region NGC 3603. The data were obtained in 1997 and 2007 permitting us to derive membership based on proper motions of the stars. Our data are consistent with an age of 1 Myr for the HD 97950 cluster. A possible age spread, if present in the cluster, appears to be small. The global slope of the incompleteness-corrected mass function for member stars within 60$$ is $rm Gamma=-0.88pm0.15$, which is flatter than the value of a Salpeter slope of -1.35. The radially varying mass function shows pronounced mass segregation ranging from slopes of $-0.26 pm 0.32$ in the inner $5$ to $-0.94pm 0.36$ in the outermost annulus ($40$ -- $60$). Stars more massive than 50 M$_{odot}$ are found only in the cluster center. The $Lambda$ minimum spanning tree technique confirms significant mass segregation down to 30 M$_{odot}$. The dependence of $Lambda$ on mass, i.e., that high-mass stars are more segregated than low mass stars, and the (weak) dependence of the velocity dispersion on stellar mass might imply that the mass segregation is dynamical in origin. While primordial segregation cannot be excluded, the properties of the mass segregation indicate that dynamical mass segregation may have been the dominant process for segregation of high-mass stars.



rate research

Read More

474 - Mario Pasquato 2009
[abridged] Theoretical investigations have suggested the presence of Intermediate Mass Black Holes (IMBHs, with masses in the 100-10000 Msun range) in the cores of some Globular Clusters (GCs). In this paper we present the first application of a new technique to determine the presence or absence of a central IMBH in globular clusters that have reached energy equipartition via two-body relaxation. The method is based on the measurement of the radial profile for the average mass of stars in the system, using the fact that a quenching of mass segregation is expected when an IMBH is present. Here we measure the radial profile of mass segregation using main-sequence stars for the globular cluster NGC 2298 from resolved source photometry based on HST-ACS data. The observations are compared to expectations from direct N-body simulations of the dynamics of star clusters with and without an IMBH. The mass segregation profile for NGC 2298 is quantitatively matched to that inferred from simulations without a central massive object over all the radial range probed by the observations, that is from the center to about two half-mass radii. Profiles from simulations containing an IMBH more massive than ~ 300-500 Msun (depending on the assumed total mass of NGC 2298) are instead inconsistent with the data at about 3 sigma confidence, irrespective of the IMF and binary fraction chosen for these runs. While providing a null result in the quest of detecting a central black hole in globular clusters, the data-model comparison carried out here demonstrates the feasibility of the method which can also be applied to other globular clusters with resolved photometry in their cores.
Aims: We aim at deriving the excitation conditions of the interstellar gas as well as the local FUV intensities in the molecular cloud surrounding NGC 3603 to get a coherent picture of how the gas is energized by the central stars. Methods: The NANTEN2-4m submillimeter antenna is used to map the [CI] 1-0, 2-1 and CO 4-3, 7-6 lines in a 2 x 2 region around the young OB cluster NGC 3603 YC. These data are combined with C18O 2-1 data, HIRES-processed IRAS 60 and 100 micron maps of the FIR continuum, and Spitzer/IRAC maps. Results: The NANTEN2 observations show the presence of two molecular clumps located south-east and south-west of the cluster and confirm the overall structure already found by previous CS and C18O observations. We find a slight position offset of the peak intensity of CO and [CI], and the atomic carbon appears to be further extended compared to the molecular material. We used the HIRES far-infrared dust data to derive a map of the FUV field heating the dust. We constrain the FUV field to values of chi = 3 - 6 times 10^3 in units of the Draine field across the clouds. Approximately 0.2 to 0.3 % of the total FUV energy is re-emitted in the [CII] 158 {mu}m cooling line observed by ISO. Applying LTE and escape probability calculations, we derive temperatures (TMM1 = 43 K, TMM2 = 47 K), column densities (N(MM1) = 0.9 times 10^22 cm^-2, N(MM2) = 2.5 times 10^22 cm^-2) and densities (n(MM1) = 3 times 10^3 cm^-3, n(MM2) = 10^3 -10^4 cm^-3) for the two observed molecular clumps MM1 and MM2. Conclusions: The cluster is strongly interacting with the ambient molecular cloud, governing its structure and physical conditions. A stability analysis shows the existence of gravitationally collapsing gas clumps which should lead to star formation. Embedded IR sources have already been observed in the outskirts of the molecular cloud and seem to support our conclusions.
We have used new, deep, visible and near infrared observations of the compact starburst cluster in the giant HII region NGC 3603 and its surroundings with the WFC3 on HST and HAWK-I on the VLT to study in detail the physical properties of its intermediate mass (~ 1 - 3 M_sun) stellar population. We show that after correction for differential extinction and actively accreting stars, and the study of field star contamination, strong evidence remains for a continuous spread in the ages of pre-main sequence stars in the range ~ 2 to ~ 30 Myr within the temporal resolution available. Existing differences among presently available theoretical models account for the largest possible variation in shape of the measured age histograms within these limits. We also find that this isochronal age spread in the near infrared and visible Colour-Magnitude Diagrams cannot be reproduced by any other presently known source of astrophysical or instrumental scatter that could mimic the luminosity spread seen in our observations except, possibly, episodic accretion. The measured age spread and the stellar spatial distribution in the cluster are consistent with the hypothesis that star formation started at least 20-30 Myrs ago progressing slowly but continuously up to at least a few million years ago. All the stars in the considered mass range are distributed in a flattened oblate spheroidal pattern with the major axis oriented in an approximate South-East - North-West direction, and with the length of the equatorial axis decreasing with increasing age. This asymmetry is most likely due to the fact that star formation occurred along a filament of gas and dust in the natal molecular cloud oriented locally in this direction.
We used a combination of Hubble Space Telescope and ground based data to probe the dynamical state of the low mass Galactic globular cluster NGC 6101. We have re-derived the structural parameters of the cluster by using star counts and we find that it is about three times more extended than thought before. By using three different indicators, namely the radial distribution of Blue Straggler Stars, that of Main Sequence binaries and the luminosity (mass) function, we demonstrated that NGC 6101 shows no evidence of mass segregation, even in the innermost regions. Indeed, both the BSS and the binary radial distributions fully resemble that of any other cluster population. In addition the slope of the luminosity (mass) functions does not change with the distance, as expected for non relaxed stellar systems. NGC 6101 is one of the few globulars where the absence of mass segregation has been observed so far. This result provides additional support to the use of the dynamical clock calibrated on the radial distribution of the Blue Stragglers as a powerful indicator of the cluster dynamical age.
139 - A. Roman-Lopes 2013
In this letter we communicate the identification of a new Galactic O2If* star (MTT 68) isolated at a projected linear distance of 3 pc from the centre of the star-burst cluster NGC 3603. From its optical photometry I computed a bolometric luminosity M_Bol = -10.7, which corresponds to a total stellar luminosity of 1.5 x 10^{6} L_Sun. It was found an interesting similarity between MTT 68 and the well known multiple system HD 93129. From Hubble Space Telescope F656N images of the NGC 3603 field, it was found that MTT 68 is actually a visual binary system with an angular separation of 0.38 arcsec, which corresponds to a projected (minimum) linear distance of r_(A-B) = 1.4 x 10^{-2} pc. This value is similar to that for the HD 93129A (O2If*) and HD 93129B (O3.5) pair, r_(A-B) = 3.0 x 10^{-2} pc. On the other hand, HD93129A has a third closer companion named HD 93129Ab (O3.5) at only 0.053 arcsec, and taking into account that the X-ray to total stellar luminosity ratio for the MTT 68 system (L_X/L_Bol 10^{-5}) is about two orders of magnitude above the canonical value expected for single stars, I suspect that the MTT 68 system probably hosts another massive companion not resolved by the HST archive images.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا