We report an on-chip solid-state Mach-Zehnder interferometer operating on two-dimensional (2D) plasmonic waves at microwave frequencies. Two plasmonic paths are defined with GaAs/AlGaAs 2D electron gas 80 nm below a metallic gate. The gated 2D plasmonic waves achieve a velocity of ~c/300 (c: free-space light speed). Due to this ultra-subwavelength confinement, the resolution of the 2D plasmonic interferometer is two orders of magnitude higher than that of its electromagnetic counterpart at a given frequency. This GHz proof-of-concept at cryogenic temperatures can be scaled to the THz IR range for room temperature operation, while maintaining the benefits of the ultra-subwavelength confinement.
Collective modes of doped two-dimensional crystalline materials, namely graphene, MoS$_2$ and phosphorene, both monolayer and bilayer structures, are explored using the density functional theory simulations together with the random phase approximation. The many-body dielectric functions of the materials are calculated using an {it ab initio} based model involving material-realistic physical properties. Having calculated the electron energy-loss, we calculate the collective modes of each material considering the in-phase and out-of-phase modes for bilayer structures. Furthermore, owing to many band structures and intreband transitions, we also find high-energy excitations in the systems. We explain that the material-specific dielectric function considering the polarizability of the crystalline material such as MoS$_2$ are needed to obtain realistic plasmon dispersions. For each material studied here, we find different collective modes and describe their physical origins.
Coulomb interactions play an essential role in atomically-thin materials. On one hand, they are strong and long-ranged in layered systems due to the lack of environmental screening. On the other hand, they can be efficiently tuned by means of surrounding dielectric materials. Thus all physical properties which decisively depend on the exact structure of the electronic interactions can be in principle efficiently controlled and manipulated from the outside via Coulomb engineering. Here, we show how this concept can be used to create fundamentally new plasmonic waveguides in metallic layered materials. We discuss in detail how dielectrically structured environments can be utilized to non-invasively confine plasmonic excitations in an otherwise homogeneous metallic 2D system by modification of its many-body interactions. We define optimal energy ranges for this mechanism and demonstrate plasmonic confinement within several nanometers. In contrast to conventional functionalization mechanisms, this scheme relies on a purely many-body concept and does not involve any direct modifications to the active material itself.
We have studied the plasmonic properties of aperiodic arrays of identical nanoparticles (NPs) formed by two opposite and equal graded-chains (a chain where interactions change gradually). We found that these arrays concentrate the external electromagnetic fields even in the long wavelength limit. The phenomenon was understood by identifying the system with an effective cavity where plasmonics excitations are trapped between effective band edges, resulting from the change of passband with NPs position. Dependence of excitation concentration on several systems parameter was also assessed. This includes, different gradings as well as NPs couplings, damping, and resonant frequencies. In the spirit of the scaling laws in condensed matter physics, we developed a theory that allows us to rationalize all these systems parameters into universal curves. The theory is quite general and can also be used on many other situations (different arrays for example). Additionally, we also provided an analytical solution, in the tight-binding limit, for the plasmonic response of homogeneous linear chains of NPs illuminated by a plane wave. Our results can find applications on sensing, near field imaging, plasmon-enhanced photodetectors, as well as to increase solar cell efficiency.
The development of spin qubits for quantum technologies requires their protection from the main source of finite-temperature decoherence: atomic vibrations. Here we eliminate one of the main barriers to the progress in this field by providing a complete first-principles picture of spin relaxation that includes up to two-phonon processes. Our method is based on machine learning and electronic structure theory and makes the prediction of spin lifetime in realistic systems feasible. We study a prototypical vanadium-based molecular qubit and reveal that the spin lifetime at high temperature is limited by Raman processes due to a small number of THz intra-molecular vibrations. These findings effectively change the conventional understanding of spin relaxation in this class of materials and open new avenues for the rational design of long-living spin systems.
The ability to uniquely identify an object or device is important for authentication. Imperfections, locked into structures during fabrication, can be used to provide a fingerprint that is challenging to reproduce. In this paper, we propose a simple optical technique to read unique information from nanometer-scale defects in 2D materials. Flaws created during crystal growth or fabrication lead to spatial variations in the bandgap of 2D materials that can be characterized through photoluminescence measurements. We show a simple setup involving an angle-adjustable transmission filter, simple optics and a CCD camera can capture spatially-dependent photoluminescence to produce complex maps of unique information from 2D monolayers. Atomic force microscopy is used to verify the origin of the optical signature measured, demonstrating that it results from nanometer-scale imperfections. This solution to optical identification with 2D materials could be employed as a robust security measure to prevent counterfeiting.
Kitty Y. M. Yeung
,Hosang Yoon
,William Andress
.
(2012)
.
"Two-Path Solid-State Interferometry Using Ultra-Subwavelength 2D Plasmonic Waves"
.
Kitty Y. M. Yeung
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا