Do you want to publish a course? Click here

Effect of winding edge currents

84   0   0.0 ( 0 )
 Added by Stephane Ouvry
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss persistent currents for particles with internal degrees of freedom. The currents arise because of winding properties essential for the chaotic motion of the particles in a confined geometry. The currents do not change the particle concentrations or thermodynamics, similar to the skipping orbits in a magnetic field.

rate research

Read More

Constructing systems that exhibit time-scales much longer than those of the underlying components, as well as emergent dynamical and collective behavior, is a key goal in fields such as synthetic biology and materials self-assembly. Inspiration often comes from living systems, in which robust global behavior prevails despite the stochasticity of the underlying processes. Here, we present two-dimensional stochastic networks that consist of minimal motifs representing out-of-equilibrium cycles at the molecular scale and support chiral edge currents in configuration space. These currents arise in the topological phase due to the bulk-boundary correspondence and dominate the system dynamics in the steady-state, further proving robust to defects or blockages. We demonstrate the topological properties of these networks and their uniquely non-Hermitian features such as exceptional points and vorticity, while characterizing the edge state localization. As these emergent edge currents are associated to macroscopic timescales and length scales, simply tuning a small number of parameters enables varied dynamical phenomena including a global clock, dynamical growth and shrinkage, and synchronization. Our construction provides a novel topological formalism for stochastic systems and fresh insights into non-Hermitian physics, paving the way for the prediction of robust dynamical states in new classical and quantum platforms.
110 - M. A. Rajabpour 2009
We find the exact winding number distribution of Riemann-Liouville fractional Brownian motion for large times in two dimensions using the propagator of a free particle. The distribution is similar to the Brownian motion case and it is of Cauchy type. In addition we find the winding number distribution of fractal time process, i.e., time fractional Fokker-Planck equation, in the presence of finite size winding center.
The equilibrium crystal shape (ECS) of oxygen-covered tungsten micricrystal is studied as a function of temperature. The specially designed ultrafast crystal quenching setup with the cooling rate of 6000 K/s allows to draw conclusions about ECS at high temperatures. The edge-rounding transition is shown to occur between 1300 K and 1430 K. The ratio of surface free energies $gamma(111)/gamma(211)$ is determined as a function of temperature.
189 - J. Dziarmaga , J. Meisner , 2008
We study phase transition from the Mott insulator to superfluid in a periodic optical lattice. Kibble-Zurek mechanism predicts buildup of winding number through random walk of BEC phases, with the step size scaling as a the third root of transition rate. We confirm this and demonstrate that this scaling accounts for the net winding number after the transition.
We classify the sectors of configurations that result from the dynamics of 2d crossing flux lines, which are the simplest degrees of freedom of the 3-coloring lattice model. We show that the dynamical obstruction is the consequence of two effects: (i) conservation laws described by a set of invariants that are polynomials of the winding numbers of the loop configuration, (ii) steric obstruction that prevents paths between configurations, for lack of free space. We argue that the invariants fully classify the configurations in five, chiral and achiral, sectors and no further obstruction in the limit of low-winding numbers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا