No Arabic abstract
We investigate experimentally an exotic state of electronic matter obtained by fine-tuning to a quantum critical point (QCP), realized in a spin-polarized resonant level coupled to strongly dissipative electrodes. Several transport scaling laws near and far from equilibrium are measured, and then accounted for theoretically. Our analysis reveals a splitting of the resonant level into two quasi-independent Majorana modes, one strongly hybridized to the leads, and the other tightly bound to the quantum dot. Residual interactions involving these Majorana fermions result in the observation of a striking quasi-linear non-Fermi liquid scattering rate at the QCP. Our devices constitute a viable alternative to topological superconductors as a platform for studying strong correlation effects within Majorana physics.
The resonant-level model represents a paradigmatic quantum system which serves as a basis for many other quantum impurity models. We provide a comprehensive analysis of the non-equilibrium transport near a quantum phase transition in a spinless dissipative resonant-level model, extending earlier work [Phys. Rev. Lett. 102, 216803 (2009)]. A detailed derivation of a rigorous mapping of our system onto an effective Kondo model is presented. A controlled energy-dependent renormalization group approach is applied to compute the non-equilibrium current in the presence of a finite bias voltage V. In the linear response regime V ->0, the system exhibits as a function of the dissipative strength a localized-delocalized quantum transition of the Kosterlitz-Thouless (KT) type. We address fundamental issues of the non-equilibrium transport near the quantum phase transition: Does the bias voltage play the same role as temperature to smear out the transition? What is the scaling of the non-equilibrium conductance near the transition? At finite temperatures, we show that the conductance follows the equilibrium scaling for V< T, while it obeys a distinct non-equilibrium profile for V>T. We furthermore provide new signatures of the transition in the finite-frequency current noise and AC conductance via the recently developed Functional Renormalization Group (FRG) approach. The generalization of our analysis to non-equilibrium transport through a resonant level coupled to two chiral Luttinger-liquid leads, generated by the fractional quantum Hall edge states, is discussed. Our work on dissipative resonant level has direct relevance to the experiments in a quantum dot coupled to resistive environment, such as H. Mebrahtu et al., Nature 488, 61, (2012).
Nonequilibrium properties of correlated quantum matter are being intensively investigated because of the rich interplay between external driving and the many-body correlations. Of particular interest is the nonequilibrium behavior near a quantum critical point (QCP), where the system is delicately balanced between different ground states. We present both an analytical calculation of the nonequilibrium steady-state current in a critical system and experimental results to which the theory is compared. The system is a quantum dot coupled to resistive leads: a spinless resonant level interacting with an ohmic dissipative environment. A two channel Kondo-like QCP occurs when the level is on resonance and symmetrically coupled to the leads, conditions achieved by fine-tuning using electrostatic gates. We calculate and measure the nonlinear current as a function of bias ($I$-$V$ curve) at the critical values of the gate voltages corresponding to the QCP. The quantitative agreement between the experimental data and the theory, with no fitting parameter, is excellent. As our system is fully accessible to both theory and experiment, it provides an ideal setting for addressing nonequilibrium phenomena in correlated quantum matter.
Motivated by a recent experiment [Nadj-Perge et al., Science 346, 602 (2014)] providing evidence for Majorana zero modes in iron chains on the superconducting Pb surface, in the present work, we theoretically propose an all-optical scheme to detect Majorana fermions, which is very different from the current tunneling measurement based on electrical means. The optical detection proposal consists of a quantum dot embedded in a nanomechanical resonator with optical pump-probe technology. With the optical means, the signal in the coherent optical spectrum presents a distinct signature for the existence of Majorana fermions in the end of iron chains. Further, the vibration of the nanomechanical resonator behaving as a phonon cavity will enhance the exciton resonance spectrum, which makes the Majorana fermions more sensitive to be detectable. This optical scheme affords a potential supplement for detection of Majorana fermions and supports to use Majorana fermions in Fe chains as qubits for potential applications in quantum computing devices.
Coupling a quantum system to a bosonic environment always give rise to inelastic processes, which reduce the coherency of the system. We measure energy dependent rates for inelastic tunneling processes in a fully controllable two-level system of a double quantum dot. The emission and absorption rates are well repro-duced by Einsteins coefficients, which relate to the spontaneous emission rate. The inelastic tunneling rate can be comparable to the elastic tunneling rate if the boson occupation number becomes large. In the specific semiconductor double dot, the energy dependence of the inelastic rate suggests that acoustic phonons are coupled to the double dot piezoelectrically.
We have observed anomalous transport properties for a 50 nm Bi dot in the Coulomb-blockade regime. Over a range of gate voltages, Coulomb blockade peaks are suppressed at low bias, and dramatic structure appears in the current at higher bias. We propose that the state of the dot is determined self-consistently with the state of a nearby two-level system (TLS) to which it is electrostatically coupled. As a gate voltage is swept, the ground state alternates between states of the TLS, leading to skipped Coulomb-blockade peaks at low bias. At a fixed gate voltage and high bias, transport may occur through a cascade of excited states connected by the dynamic switching of the TLS.