Do you want to publish a course? Click here

Observing atom bunching by the Fourier slice theorem

219   0   0.0 ( 0 )
 Added by Jeff Steinhauer
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

By a novel reciprocal space analysis of the measurement, we report a calibrated in situ observation of the bunching effect in a 3D ultracold gas. The calibrated measurement with no free parameters confirms the role of the exchange symmetry and the Hanbury Brown-Twiss effect in the bunching. Also, the enhanced fluctuations of the bunching effect give a quantitative measure of the increased isothermal compressibility. We use 2D images to probe the 3D gas, using the same principle by which computerized tomography reconstructs a 3D image of a body. The powerful reciprocal space technique presented is applicable to systems with one, two, or three dimensions.



rate research

Read More

The state-of-the-art automotive radars employ multidimensional discrete Fourier transforms (DFT) in order to estimate various target parameters. The DFT is implemented using the fast Fourier transform (FFT), at sample and computational complexity of $O(N)$ and $O(N log N)$, respectively, where $N$ is the number of samples in the signal space. We have recently proposed a sparse Fourier transform based on the Fourier projection-slice theorem (FPS-SFT), which applies to multidimensional signals that are sparse in the frequency domain. FPS-SFT achieves sample complexity of $O(K)$ and computational complexity of $O(K log K)$ for a multidimensional, $K$-sparse signal. While FPS-SFT considers the ideal scenario, i.e., exactly sparse data that contains on-grid frequencies, in this paper, by extending FPS-SFT into a robust version (RFPS-SFT), we emphasize on addressing noisy signals that contain off-grid frequencies; such signals arise from radar applications. This is achieved by employing a windowing technique and a voting-based frequency decoding procedure; the former reduces the frequency leakage of the off-grid frequencies below the noise level to preserve the sparsity of the signal, while the latter significantly lowers the frequency localization error stemming from the noise. The performance of the proposed method is demonstrated both theoretically and numerically.
We propose a multi-dimensional (M-D) sparse Fourier transform inspired by the idea of the Fourier projection-slice theorem, called FPS-SFT. FPS-SFT extracts samples along lines (1-dimensional slices from an M-D data cube), which are parameterized by random slopes and offsets. The discrete Fourier transform (DFT) along those lines represents projections of M-D DFT of the M-D data onto those lines. The M-D sinusoids that are contained in the signal can be reconstructed from the DFT along lines with a low sample and computational complexity provided that the signal is sparse in the frequency domain and the lines are appropriately designed. The performance of FPS-SFT is demonstrated both theoretically and numerically. A sparse image reconstruction application is illustrated, which shows the capability of the FPS-SFT in solving practical problems.
The breaking of time reversal symmetry via the spontaneous formation of chiral order is ubiquitous in nature. Here, we present an unambiguous demonstration of this phenomenon for atoms Bose-Einstein condensed in the second Bloch band of an optical lattice. As a key tool we use a matter wave interference technique, which lets us directly observe the phase properties of the superfluid order parameter and allows us to reconstruct the spatial geometry of certain low energy excitations, associated with the formation of domains of different chirality. Our work marks a new era of optical lattices where orbital degrees of freedom play an essential role for the formation of exotic quantum matter, similarly as in electronic systems.
Ferrofluids show unusual hydrodynamic effects due to the magnetic nature of their constituents. For increasing magnetization a classical ferrofluid undergoes a Rosensweig instability and creates self-organized ordered surface structures or droplet crystals. A Bose-Einstein condensate with strong dipolar interactions is a quantum ferrofluid that also shows superfluidity. The field of dipolar quantum gases is motivated by the search for new phases that break continuous symmetries. The simultaneous breaking of continuous symmetries like the phase invariance for the superfluid state and the translational symmetry for a crystal provides the basis of novel states of matter. However, interaction-induced crystallization in a superfluid has not been observed. Here we use in situ imaging to directly observe the spontaneous transition from an unstructured superfluid to an ordered arrangement of droplets in an atomic dysprosium Bose-Einstein condensate. By utilizing a Feshbach resonance to control the interparticle interactions, we induce a finite-wavelength instability and observe discrete droplets in a triangular structure, growing with increasing atom number. We find that these states are surprisingly long-lived and measure a hysteretic behaviour, which is typical for a crystallization process and in close analogy to the Rosensweig instability. Our system can show both superfluidity and, as shown here, spontaneous translational symmetry breaking. The presented observations do not probe superfluidity in the structured states, but if the droplets establish a common phase via weak links, this system is a very good candidate for a supersolid ground state.
Interferometry with ultracold atoms promises the possibility of ultraprecise and ultrasensitive measurements in many fields of physics, and is the basis of our most precise atomic clocks. Key to a high sensitivity is the possibility to achieve long measurement times and precise readout. Ultra cold atoms can be precisely manipulated at the quantum level, held for very long times in traps, and would therefore be an ideal setting for interferometry. In this paper we discuss how the non-linearities from atom-atom interactions on one hand allow to efficiently produce squeezed states for enhanced readout, but on the other hand result in phase diffusion which limits the phase accumulation time. We find that low dimensional geometries are favorable, with two-dimensional (2D) settings giving the smallest contribution of phase diffusion caused by atom-atom interactions. Even for time sequences generated by optimal control the achievable minimal detectable interaction energy $Delta E^{rm min}$ is on the order of 0.001 times the chemical potential of the BEC in the trap. From there we have to conclude that for more precise measurements with atom interferometers more sophisticated strategies, or turning off the interaction induced dephasing during the phase accumulation stage, will be necessary.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا