Do you want to publish a course? Click here

Search for Superscreening effect in Superconductor

94   0   0.0 ( 0 )
 Publication date 2012
  fields
and research's language is English
 Authors P. Ujic




Ask ChatGPT about the research

The decay of $^{19}$O($beta^-$) and $^{19}$Ne($beta^+$) implanted in niobium in its superconducting and metallic phase was measured using purified radioactive beams produced by the SPIRAL/GANIL facility. Half-lives and branching ratios measured in the two phases are consistent within one-sigma error bar. This measurement casts strong doubts on the predicted strong electron screening in superconductor, the so-called superscreening. The measured difference in screening potential energy is 110(90) eV for $^{19}$Ne and 400(320) eV for $^{19}$O. Precise determinations of the half-lives were obtained for $^{19}$O: 26.476(9) s and $^{19}$Ne: 17.254(5) s.



rate research

Read More

The 685 keV excitation energy of the first excited 0+ state in 152Sm makes it an attractive candidate to explore expected two-phonon excitations at low energy. Multiple-step Coulomb excitation and inelastic neutron scattering studies of 152Sm are used to probe the E2 collectivity of excited 0+ states in this soft nucleus and the results are compared with model predictions. No candidates for two-phonon K=0+ quadrupole vibrational states are found. A 2+, K=2 state with strong E2 decay to the first excited K=0+ band and a probable 3+ band member are established.
Theoretical calculations suggest the presence of low-lying excited states in $^{25}$O. Previous experimental searches by means of proton knockout on $^{26}$F produced no evidence for such excitations. We search for excited states in $^{25}$O using the ${ {}^{24}text{O} (d,p) {}^{25}text{O} }$ reaction. The theoretical analysis of excited states in unbound $^{25,27}$O is based on the configuration interaction approach that accounts for couplings to the scattering continuum. We use invariant-mass spectroscopy to measure neutron-unbound states in $^{25}$O. For the theoretical approach, we use the complex-energy Gamow Shell Model and Density Matrix Renormalization Group method with a finite-range two-body interaction optimized to the bound states and resonances of $^{23-26}$O, assuming a core of $^{22}$O. We predict energies, decay widths, and asymptotic normalization coefficients. Our calculations in a large $spdf$ space predict several low-lying excited states in $^{25}$O of positive and negative parity, and we obtain an experimental limit on the relative cross section of a possible ${ {J}^{pi} = {1/2}^{+} }$ state with respect to the ground-state of $^{25}$O at $sigma_{1/2+}/sigma_{g.s.} = 0.25_{-0.25}^{+1.0}$. We also discuss how the observation of negative parity states in $^{25}$O could guide the search for the low-lying negative parity states in $^{27}$O. Previous experiments based on the proton knockout of $^{26}$F suffered from the low cross sections for the population of excited states in $^{25}$O because of low spectroscopic factors. In this respect, neutron transfer reactions carry more promise.
The chiral magnetic effect (CME) is a novel transport phenomenon, arising from the interplay between quantum anomalies and strong magnetic fields in chiral systems. In high-energy nuclear collisions, the CME may survive the expansion of the quark-gluon plasma fireball and be detected in experiments. Over the past decade, the experimental searches for the CME have aroused extensive interest at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). The main goal of this article is to investigate three pertinent experimental approaches: the $gamma$ correlator, the $R$ correlator and the signed balance functions. We will exploit both simple Monte Carlo simulations and a realistic event generator (EBE-AVFD) to verify the equivalence in the kernel-component observables among these methods and to ascertain their sensitivities to the CME signal for the isobaric collisions at RHIC.
Quark interactions with topological gluon configurations can induce local chirality imbalance and parity violation in quantum chromodynamics, which can lead to the chiral magnetic effect (CME) -- an electric charge separation along the strong magnetic field in relativistic heavy-ion collisions. The CME-sensitive azimuthal correlator observable ($Deltagamma$) is contaminated by background arising, in part, from resonance decays coupled with elliptic anisotropy ($v_{2}$). We report here the first differential measurements of the correlator as a function of the pair invariant mass ($m_{rm inv}$) in 20-50% centrality Au+Au collisions at $sqrt{s_{_{rm NN}}}$= 200 GeV by the STAR experiment at RHIC. Strong resonance background contributions to $Deltagamma$ are observed. At large $m_{rm inv}$ where this background is significantly reduced, the $Deltagamma$ value is found to be also significantly smaller. An event shape engineering technique is deployed to determine the $v_{2}$ background shape as a function of $m_{rm inv}$. A $v_{2}$-independent signal, possibly indicating a $m_{rm inv}$-integrated CME contribution, is extracted to be $Deltagamma_{rm signal}$ = (0.03 $pm$ 0.06 $pm$ 0.08) $times10^{-4}$, or $(2pm4pm5)%$ of the inclusive $Deltagamma(m_{rm inv}>0.4$ GeV/$c^2$)$=(1.58 pm 0.02 pm 0.02) times10^{-4}$. This presents an upper limit of $0.23times10^{-4}$, or $15%$ of the inclusive result at $95%$ confidence level.
197 - Q.T. Doan 2008
Theoretical predictions suggest the presence of tetrahedral symmetry as an explanation for the vanishing intra-band E2-transitions at the bottom of the odd-spin negative parity band in $^{156}Gd$. The present study reports on experiment performed to address this phenomenon. It allowed to determine the intra-band E2 transitions and branching ratios B(E2)/B(E1) of two of the negative-parity bands in $^{156}Gd$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا