Motivated by a proposed experimental search for the electric dipole moment of the neutron (nEDM) utilizing neutron-$^3$He capture in a dilute solution of $^3$He in superfluid $^4 $He, we derive the transport properties of dilute solutions in the regime where the $^3$He are classically distributed and rapid $^3$He-$^3$He scatterings keep the $^3$He in equilibrium. Our microscopic framework takes into account phonon-phonon, phonon-$^3$He, and $^3$He-$^3$He scatterings. We then apply these calculations to measurements by Rosenbaum et al. [J.Low Temp.Phys. {bf 16}, 131 (1974)] and by Lamoreaux et al. [Europhys.Lett. {bf 58}, 718 (2002)] of dilute solutions in the presence of a heat flow. We find satisfactory agreement of theory with the data, serving to confirm our understanding of the microscopics of the helium in the future nEDM experiment.