Impulsive Laser Induced Alignment of Molecules Dissolved in Helium Nanodroplets


Abstract in English

We show that a 450 fs nonresonant, moderately intense, linearly polarized laser pulse can induce field-free molecular axis alignment of methyliodide molecules dissolved in a helium nanodroplet. Time-resolved measurements reveal rotational dynamics much slower than that of isolated molecules and, surprisingly, complete absence of the sharp transient alignment recurrences characteristic of gas phase molecules. Our results presage a range of new opportunities for exploring both molecular dynamics in a dissipative environment and the properties of He nanodroplets.

Download