Do you want to publish a course? Click here

High Resolution Infrared Imaging & Spectroscopy of the Z Canis Majoris System During Quiescence & Outburst

254   0   0.0 ( 0 )
 Added by Sasha Hinkley
 Publication date 2012
  fields Physics
and research's language is English
 Authors Sasha Hinkley




Ask ChatGPT about the research

We present adaptive optics photometry and spectra in the JHKL-bands along with high spectral resolution K-band spectroscopy for each component of the Z Canis Majoris system. Our high angular resolution photometry of this very young (<1 Myr) binary, comprised of an FU Ori object and a Herbig Ae/Be star, were gathered shortly after the 2008 outburst while our high resolution spectroscopy was gathered during a quiescent phase. Our photometry conclusively determine that the outburst was due solely to the embedded Herbig Ae/Be member, supporting results from earlier works, and that the optically visible FU Ori component decreased slightly (~30%) in luminosity during the same period, consistent with previous works on the variability of FU Ori type systems. Further, our high-resolution K-band spectra definitively demonstrate that the 2.294 micron CO absorption feature seen in composite spectra of the system is due solely to the FU Ori component, while a prominent CO emission feature at the same wavelength, long suspected to be associated with the innermost regions of a circumstellar accretion disk, can be assigned to the Herbig Ae/Be member. These findings are in contrast to previous analyses (e.g. Malbet et al 2010, Benisty et al. 2010) of this complex system which assigned the CO emission to the FU Ori component.



rate research

Read More

We explore the accretion mechanisms in EX Lupi, prototype of EXor variables, during its quiescence and outburst phases. We analyse high-resolution optical spectra taken before, during, and after its 2008 outburst. In quiescence and outburst, the star presents many permitted emission lines, including typical CTTS lines and numerous neutral and ionized metallic lines. During the outburst, the number of emission lines increases to over a thousand, with narrow plus broad component structure (NC+BC). The BC profile is highly variable on short timescales (24-72h). An active chromosphere can explain the metallic lines in quiescence and the outburst NC. The dynamics of the BC line profiles suggest an origin in a hot, dense, non-axisymmetric, and non-uniform accretion column that suffers velocity variations along the line-of-sight on timescales of days. Assuming Keplerian rotation, the emitting region would be located at ~0.1-0.2 AU, consistent with the inner disk rim, but the velocity profiles of the lines reveal a combination of rotation and infall. Line ratios of ions and neutrals can be reproduced with a temperature of T~6500 K for electron densities of a few times 10$^{12}$cm$^{-3}$ in the line-emitting region. The data confirm that the 2008 outburst was an episode of increased accretion, albeit much stronger than previous EX Lupi and typical EXors outbursts. The line profiles are consistent with the infall/rotation of a non-axisymmetric structure that could be produced by clumpy accretion during the outburst phase. A strong inner disk wind appears in the epochs of higher accretion. The rapid recovery of the system after the outburst and the similarity between the pre-outburst and post-outburst states suggest that the accretion channels are similar during the whole period, and only the accretion rate varies, providing a superb environment for studying the accretion processes.
We analyzed the young (2.8-Myr-old) binary system FS Tau A using near-infrared (H-band) high-contrast polarimetry data from Subaru/HiCIAO and sub-millimeter CO (J=2-1) line emission data from ALMA. Both the near-infrared and sub-millimeter observations reveal several clear structures extending to $sim$240 AU from the stars. Based on these observations at different wavelengths, we report the following discoveries. One arm-like structure detected in the near-infrared band initially extends from the south of the binary with a subsequent turn to the northeast, corresponding to two bar-like structures detected in ALMA observations with an LSRK velocity of 1.19-5.64 km/s. Another feature detected in the near-infrared band extends initially from the north of the binary, relating to an arm-like structure detected in ALMA observations with an LSRK velocity of 8.17-16.43 km/s. From their shapes and velocities, we suggest that these structures can mostly be explained by two streamers that connect the outer circumbinary disk and the central binary components. These discoveries will be helpful for understanding the evolution of streamers and circumstellar disks in young binary systems.
We present near-infrared high resolution observations of the young binary system Z Canis Majoris using the adaptive optics system at the Keck-II telescope. Both components are unresolved at 1.25 and 1.65 microns, although high dynamic range images reveal a previously unknown jet-like feature in the circumstellar environment. We argue that this feature probably arises from light scattered off the walls of a jet-blown cavity, and proper motion studies of this feature can probe the dynamics of the bipolar outflow. Potentially, the morphology of the dust-laden cavity walls offers a new probe of the momentum profile and collimation of bipolar winds from young stellar objects. We also derive high precision binary parameters, which when combined with historical data have allowed the first detection of orbital motion. Lastly, our observations confirm the high degree of flux variability in the system; the North-West binary component is dominant at H-band, in contrast to all previous observations.
A snow-line is the region of a protoplanetary disk at which a major volatile, such as water or carbon monoxide, reaches its condensation temperature. Snow-lines play a crucial role in disk evolution by promoting the rapid growth of ice-covered grains. Signatures of the carbon monoxide snow-line (at temperatures of around 20 kelvin) have recently been imaged in the disks surrounding the pre-main-sequence stars TW Hydra and HD163296, at distances of about 30 astronomical units (au) from the star. But the water snow-line of a protoplanetary disk (at temperatures of more than 100 kelvin) has not hitherto been seen, as it generally lies very close to the star (less than 5 au away for solar-type stars). Water-ice is important because it regulates the efficiency of dust and planetesimal coagulation, and the formation of comets, ice giants and the cores of gas giants. Here we report ALMA images at 0.03-arcsec resolution (12 au) of the protoplanetary disk around V883 Ori, a protostar of 1.3 solar masses that is undergoing an outburst in luminosity arising from a temporary increase in the accretion rate. We find an intensity break corresponding to an abrupt change in the optical depth at about 42 au, where the elevated disk temperature approaches the condensation point of water, from which we conclude that the outburst has moved the water snow-line. The spectral behaviour across the snow-line confirms recent model predictions: dust fragmentation and the inhibition of grain growth at higher temperatures results in soaring grain number densities and optical depths. As most planetary systems are expected to experience outbursts caused by accretion during their formation our results imply that highly dynamical water snow-lines must be considered when developing models of disk evolution and planet formation.
Combining high-resolution spectropolarimetric and imaging data is key to understanding the decay process of sunspots as it allows us scrutinizing the velocity and magnetic fields of sunspots and their surroundings. Active region NOAA 12597 was observed on 24/09/2016 with the 1.5-m GREGOR solar telescope using high-spatial resolution imaging as well as imaging spectroscopy and near-infrared (NIR) spectropolarimetry. Horizontal proper motions were estimated with LCT, whereas LOS velocities were computed with spectral line fitting methods. The magnetic field properties were inferred with the SIR code for the Si I and Ca I NIR lines. At the time of the GREGOR observations, the leading sunspot had two light-bridges indicating the onset of its decay. One of the light-bridges disappeared, and an elongated, dark umbral core at its edge appeared in a decaying penumbral sector facing the newly emerging flux. The flow and magnetic field properties of this penumbral sector exhibited weak Evershed flow, moat flow, and horizontal magnetic field. The penumbral gap adjacent to the elongated umbral core and the penumbra in that penumbral sector displayed LOS velocities similar to granulation. The separating polarities of a new flux system interacted with the leading and central part of the already established active region. As a consequence, the leading spot rotated 55-degree in clockwise direction over 12 hours. In the high-resolution observations of a decaying sunspot, the penumbral filaments facing flux emergence site contained a darkened area resembling an umbral core filled with umbral dots. This umbral core had velocity and magnetic field properties similar to the sunspot umbra. This implies that the horizontal magnetic fields in the decaying penumbra became vertical as observed in flare-induced rapid penumbral decay, but on a very different time-scale.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا