Do you want to publish a course? Click here

Efficient moment-based inference of admixture parameters and sources of gene flow

211   0   0.0 ( 0 )
 Added by Mark Lipson
 Publication date 2012
  fields Biology
and research's language is English




Ask ChatGPT about the research

The recent explosion in available genetic data has led to significant advances in understanding the demographic histories of and relationships among human populations. It is still a challenge, however, to infer reliable parameter values for complicated models involving many populations. Here we present MixMapper, an efficient, interactive method for constructing phylogenetic trees including admixture events using single nucleotide polymorphism (SNP) genotype data. MixMapper implements a novel two-phase approach to admixture inference using moment statistics, first building an unadmixed scaffold tree and then adding admixed populations by solving systems of equations that express allele frequency divergences in terms of mixture parameters. Importantly, all features of the model, including topology, sources of gene flow, branch lengths, and mixture proportions, are optimized automatically from the data and include estimates of statistical uncertainty. MixMapper also uses a new method to express branch lengths in easily interpretable drift units. We apply MixMapper to recently published data for HGDP individuals genotyped on a SNP array designed especially for use in population genetics studies, obtaining confident results for 30 populations, 20 of them admixed. Notably, we confirm a signal of ancient admixture in European populations---including previously undetected admixture in Sardinians and Basques---involving a proportion of 20--40% ancient northern Eurasian ancestry.



rate research

Read More

73 - Shai Carmi , James Xue , 2015
Admixed populations are formed by the merging of two or more ancestral populations, and the ancestry of each locus in an admixed genome derives from either source. Consider a simple pulse admixture model, where populations A and B merged t generations ago without subsequent gene flow. We derive the distribution of the proportion of an admixed chromosome that has A (or B) ancestry, as a function of the chromosome length L, t, and the initial contribution of the A source, m. We demonstrate that these results can be used for inference of the admixture parameters. For more complex admixture models, we derive an expression in Laplace space for the distribution of ancestry proportions that depends on having the distribution of the lengths of segments of each ancestry. We obtain explicit results for the special case of a two-wave admixture model, where population A contributed additional migrants in one of the generations between the present and the initial admixture event. Specifically, we derive formulas for the distribution of A and B segment lengths and numerical results for the distribution of ancestry proportions. We show that for recent admixture, data generated under a two-wave model can hardly be distinguished from that generated under a pulse model.
We consider a continuous-time Markov chain model of SIR disease dynamics with two levels of mixing. For this so-called stochastic households model, we provide two methods for inferring the model parameters---governing within-household transmission, recovery, and between-household transmission---from data of the day upon which each individual became infectious and the household in which each infection occurred, as would be available from first few hundred studies. Each method is a form of Bayesian Markov Chain Monte Carlo that allows us to calculate a joint posterior distribution for all parameters and hence the household reproduction number and the early growth rate of the epidemic. The first method performs exact Bayesian inference using a standard data-augmentation approach; the second performs approximate Bayesian inference based on a likelihood approximation derived from branching processes. These methods are compared for computational efficiency and posteriors from each are compared. The branching process is shown to be an excellent approximation and remains computationally efficient as the amount of data is increased.
BACKGROUND: The uncoupling protein (UCP) genes belong to the superfamily of electron transport carriers of the mitochondrial inner membrane. Members of the uncoupling protein family are involved in thermogenesis and determining the functional evolution of UCP genes is important to understand the evolution of thermo-regulation in vertebrates. RESULTS: Sequence similarity searches of genome and scaffold data identified homologues of UCP in eutherians, teleosts and the first squamates uncoupling proteins. Phylogenetic analysis was used to characterize the family evolutionary history by identifying two duplications early in vertebrate evolution and two losses in the avian lineage (excluding duplications within a species, excluding the losses due to incompletely sequenced taxa and excluding the losses and duplications inferred through mismatch of species and gene trees). Estimates of synonymous and nonsynonymous substitution rates (dN/dS) and more complex branch and site models suggest that the duplication events were not associated with positive Darwinian selection and that the UCP is constrained by strong purifying selection except for a single site which has undergone positive Darwinian selection, demonstrating that the UCP gene family must be highly conserved. CONCLUSION: We present a phylogeny describing the evolutionary history of the UCP gene family and show that the genes have evolved through duplications followed by purifying selection except for a single site in the mitochondrial matrix between the 5th and 6th alpha-helices which has undergone positive selection.
Long-range migrations and the resulting admixtures between populations have been important forces shaping human genetic diversity. Most existing methods for detecting and reconstructing historical admixture events are based on allele frequency divergences or patterns of ancestry segments in chromosomes of admixed individuals. An emerging new approach harnesses the exponential decay of admixture-induced linkage disequilibrium (LD) as a function of genetic distance. Here, we comprehensively develop LD-based inference into a versatile tool for investigating admixture. We present a new weighted LD statistic that can be used to infer mixture proportions as well as dates with fewer constraints on reference populations than previous methods. We define an LD-based three-population test for admixture and identify scenarios in which it can detect admixture events that previous formal tests cannot. We further show that we can uncover phylogenetic relationships among populations by comparing weighted LD curves obtained using a suite of references. Finally, we describe several improvements to the computation and fitting of weighted LD curves that greatly increase the robustness and speed of the calculations. We implement all of these advances in a software package, ALDER, which we validate in simulations and apply to test for admixture among all populations from the Human Genome Diversity Project (HGDP), highlighting insights into the admixture history of Central African Pygmies, Sardinians, and Japanese.
We propose a general mechanism for evolution to explain the diversity of gene and language. To quantify their common features and reveal the hidden structures, several statistical properties and patterns are examined based on a new method called the rank-rank analysis. We find that the classical correspondence, domain plays the role of word in gene language, is not rigorous, and propose to replace domain by protein. In addition, we devise a new evolution unit, syllgram, to include the characteristics of spoken and written language. Based on the correspondence between (protein, domain) and (word, syllgram), we discover that both gene and language shared a common scaling structure and scale-free network. Like the Rosetta stone, this work may help decipher the secret behind non-coding DNA and unknown languages.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا